Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr-1)(x^(4)+2x^(3)+x^(2))/(x+1)=

limx1x4+2x3+x2x+1= \lim _{x \rightarrow-1} \frac{x^{4}+2 x^{3}+x^{2}}{x+1}=

Full solution

Q. limx1x4+2x3+x2x+1= \lim _{x \rightarrow-1} \frac{x^{4}+2 x^{3}+x^{2}}{x+1}=
  1. Identify Function and Point: Identify the function and the point at which we need to find the limit.\newlineWe are given the function f(x)=x4+2x3+x2x+1f(x) = \frac{x^4 + 2x^3 + x^2}{x + 1} and we need to find the limit as xx approaches 1-1.
  2. Check Indeterminate Form: Check if direct substitution of x=1x = -1 into the function yields an indeterminate form.f(1)=((1)4+2(1)3+(1)2)/(1+1)f(-1) = ((-1)^4 + 2(-1)^3 + (-1)^2) / (-1 + 1)=(12+1)/0= (1 - 2 + 1) / 0=0/0= 0/0This is an indeterminate form, so we cannot simply substitute x=1x = -1 to find the limit.
  3. Factor Numerator: Factor the numerator to simplify the expression.\newlineThe numerator is a polynomial that can be factored by grouping.\newlinex4+2x3+x2=x2(x2+2x+1)x^4 + 2x^3 + x^2 = x^2(x^2 + 2x + 1)\newlineNotice that x2+2x+1x^2 + 2x + 1 is a perfect square trinomial and can be factored further.\newlinex2(x2+2x+1)=x2(x+1)2x^2(x^2 + 2x + 1) = x^2(x + 1)^2
  4. Cancel Common Factor: Cancel out the common factor from the numerator and the denominator.\newlineThe common factor is (x+1)(x + 1), which can be canceled out.\newlinef(x)=x2(x+1)2(x+1)f(x) = \frac{x^2(x + 1)^2}{(x + 1)}\newlineAfter canceling out (x+1)(x + 1), we get:\newlinef(x)=x2(x+1)f(x) = x^2(x + 1)
  5. Substitute and Find Limit: Substitute x=1x = -1 into the simplified function to find the limit.\newlinef(1)=(1)2(1+1)f(-1) = (-1)^2(-1 + 1)\newline =1(0)= 1(0)\newline =0= 0