Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr-1)(5-sqrt(3x+28))/(x+1)=

limx153x+28x+1= \lim _{x \rightarrow-1} \frac{5-\sqrt{3 x+28}}{x+1}=

Full solution

Q. limx153x+28x+1= \lim _{x \rightarrow-1} \frac{5-\sqrt{3 x+28}}{x+1}=
  1. Identify the form: Identify the form of the limit.\newlineWe need to determine the form of the limit to decide the appropriate method to solve it. Let's substitute x=1x = -1 into the function to see if it results in an indeterminate form.\newlineSubstitute x=1x = -1 into the function:\newline(53(1)+28)/(1+1)(5 - \sqrt{3(-1) + 28}) / (-1 + 1)\newline= (53(1)+28)/0(5 - \sqrt{3*(-1) + 28}) / 0\newline= (53+28)/0(5 - \sqrt{-3 + 28}) / 0\newline= (525)/0(5 - \sqrt{25}) / 0\newline= (55)/0(5 - 5) / 0\newline= 0/00 / 0\newlineThis is an indeterminate form, so we need to use algebraic manipulation to simplify the expression and find the limit.
  2. Simplify using algebraic manipulation: Simplify the expression using algebraic manipulation.\newlineTo resolve the indeterminate form, we can multiply the numerator and the denominator by the conjugate of the numerator. The conjugate of (53x+28)(5 - \sqrt{3x + 28}) is (5+3x+28)(5 + \sqrt{3x + 28}).\newlineMultiply the original expression by the conjugate over itself:\newline(53x+28x+1)(5+3x+285+3x+28)\left(\frac{5 - \sqrt{3x + 28}}{x + 1}\right) * \left(\frac{5 + \sqrt{3x + 28}}{5 + \sqrt{3x + 28}}\right)\newlineThis will help us eliminate the square root in the numerator.
  3. Perform the multiplication: Perform the multiplication.\newlineNow, we multiply the numerators and the denominators separately.\newlineNumerator:\newline(53x+28)(5+3x+28)(5 - \sqrt{3x + 28}) * (5 + \sqrt{3x + 28})\newline=52(3x+28)2= 5^2 - (\sqrt{3x + 28})^2\newline=25(3x+28)= 25 - (3x + 28)\newline=253x28= 25 - 3x - 28\newline=3x3= -3x - 3\newlineDenominator:\newline(x+1)(5+3x+28)(x + 1) * (5 + \sqrt{3x + 28})\newlineWe don't need to multiply this out because we are looking for the limit as xx approaches 1-1, and we are interested in whether the denominator will cancel out the zero in the numerator.
  4. Simplify further: Simplify the expression further.\newlineNow that we have the simplified numerator, we can see if it cancels with the denominator.\newlineNumerator: 3x3-3x - 3\newlineDenominator: (x+1)(5+3x+28)(x + 1) * (5 + \sqrt{3x + 28})\newlineNotice that the numerator can be factored as 3(x+1)-3(x + 1).\newlineNumerator after factoring: 3(x+1)-3(x + 1)\newlineNow, we can cancel out the (x+1)(x + 1) term in the numerator and the denominator.
  5. Cancel common terms: Cancel out the common terms and find the limit.\newlineAfter canceling out the (x+1)(x + 1) term, we are left with:\newlineNumerator: 3-3\newlineDenominator: (5+3x+28)(5 + \sqrt{3x + 28})\newlineNow, we can substitute x=1x = -1 into the remaining expression to find the limit.\newlineLimit as xx approaches 1-1:\newline3/(5+3(1)+28)-3 / (5 + \sqrt{3(-1) + 28})\newline=3/(5+3+28)= -3 / (5 + \sqrt{-3 + 28})\newline=3/(5+25)= -3 / (5 + \sqrt{25})\newline=3/(5+5)= -3 / (5 + 5)\newline3-300\newlineSo, the limit of the function as xx approaches 1-1 is 3-333.

More problems from Identify equivalent linear expressions I