Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=2e^(4x).
Find 
(d^(2)y)/(dx^(2)).
Choose 1 answer:
(A) 
40e^(6x)
(B) 
8e^(x)
(C) 
32e^(4x)
(D) 
(e^(4x))/(8)

Let y=2e4x y=2 e^{4 x} .\newlineFind d2ydx2 \frac{d^{2} y}{d x^{2}} .\newlineChoose 11 answer:\newline(A) 40e6x 40 e^{6 x} \newline(B) 8ex 8 e^{x} \newline(C) 32e4x 32 e^{4 x} \newline(D) e4x8 \frac{e^{4 x}}{8}

Full solution

Q. Let y=2e4x y=2 e^{4 x} .\newlineFind d2ydx2 \frac{d^{2} y}{d x^{2}} .\newlineChoose 11 answer:\newline(A) 40e6x 40 e^{6 x} \newline(B) 8ex 8 e^{x} \newline(C) 32e4x 32 e^{4 x} \newline(D) e4x8 \frac{e^{4 x}}{8}
  1. Find First Derivative: Differentiate the function y=2e4xy = 2e^{4x} with respect to xx to find the first derivative.\newlineUsing the chain rule, the derivative of e4xe^{4x} is 4e4x4e^{4x}, and since we have a constant 22 multiplied, the first derivative is:\newlinedydx=2×4e4x=8e4x\frac{dy}{dx} = 2 \times 4e^{4x} = 8e^{4x}
  2. Apply Chain Rule: Differentiate the first derivative to find the second derivative.\newlineAgain using the chain rule, the derivative of 8e4x8e^{4x} is 8×4e4x8 \times 4e^{4x}, which gives us:\newlined2ydx2=8×4e4x=32e4x\frac{d^2y}{dx^2} = 8 \times 4e^{4x} = 32e^{4x}

More problems from Simplify rational expressions