Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=(x^(2)+6)/(x^(2)+3).
Find 
lim_(x rarr oo)h(x).
Choose 1 answer:
(A) 0
(B) 2
(C) 1
(D) The limit is unbounded

Let h(x)=x2+6x2+3 h(x)=\frac{x^{2}+6}{x^{2}+3} .\newlineFind limxh(x) \lim _{x \rightarrow \infty} h(x) .\newlineChoose 11 answer:\newline(A) 00\newline(B) 22\newline(C) 11\newline(D) The limit is unbounded

Full solution

Q. Let h(x)=x2+6x2+3 h(x)=\frac{x^{2}+6}{x^{2}+3} .\newlineFind limxh(x) \lim _{x \rightarrow \infty} h(x) .\newlineChoose 11 answer:\newline(A) 00\newline(B) 22\newline(C) 11\newline(D) The limit is unbounded
  1. Given function: We are given the function h(x)=x2+6x2+3h(x) = \frac{x^2 + 6}{x^2 + 3}. To find the limit as xx approaches infinity, we can divide the numerator and the denominator by x2x^2, the highest power of xx in the denominator.
  2. Dividing numerator and denominator: Divide each term in the numerator and the denominator by x2x^2: h(x)=x2/x2+6/x2x2/x2+3/x2h(x) = \frac{x^2/x^2 + 6/x^2}{x^2/x^2 + 3/x^2}
  3. Simplifying the expression: Simplify the expression by canceling out the x2x^2 terms and evaluating the limits of the remaining terms as xx approaches infinity:\newlineh(x)=1+6x21+3x2h(x) = \frac{1 + \frac{6}{x^2}}{1 + \frac{3}{x^2}}
  4. Evaluating the limit: As xx approaches infinity, the terms 6x2\frac{6}{x^2} and 3x2\frac{3}{x^2} approach 00:limxh(x)=(1+0)(1+0)\lim_{x \to \infty} h(x) = \frac{(1 + 0)}{(1 + 0)}
  5. Simplifying the limit: Simplify the expression to find the limit: limxh(x)=11\lim_{x \to \infty} h(x) = \frac{1}{1}
  6. Final value of the limit: The final value of the limit is: limxh(x)=1\lim_{x \to \infty} h(x) = 1

More problems from Power rule