Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=(x^(2)-49)/(x+7) when 
x!=-7.

h is continuous for all real numbers.
Find 
h(-7).
Choose 1 answer:
(A) -7
(B) 14
(c) 7
(D) -14

Let h(x)=x249x+7 h(x)=\frac{x^{2}-49}{x+7} when x7 x \neq-7 .\newlineh h is continuous for all real numbers.\newlineFind h(7) h(-7) .\newlineChoose 11 answer:\newline(A) 7-7\newline(B) 1414\newline(C) 77\newline(D) 14-14

Full solution

Q. Let h(x)=x249x+7 h(x)=\frac{x^{2}-49}{x+7} when x7 x \neq-7 .\newlineh h is continuous for all real numbers.\newlineFind h(7) h(-7) .\newlineChoose 11 answer:\newline(A) 7-7\newline(B) 1414\newline(C) 77\newline(D) 14-14
  1. Simplify function h(x)h(x): First, we need to simplify the function h(x)h(x) to see if we can evaluate it at x=7x = -7 without causing a division by zero.\newlineh(x)=x249x+7h(x) = \frac{x^2 - 49}{x + 7}\newlineWe notice that x249x^2 - 49 is a difference of squares and can be factored as (x+7)(x7)(x + 7)(x - 7).\newlineh(x)=[(x+7)(x7)](x+7)h(x) = \frac{[(x + 7)(x - 7)]}{(x + 7)}
  2. Cancel out common factor: Next, we can cancel out the common factor (x+7)(x + 7) in the numerator and the denominator, as long as xx is not equal to 7-7, to avoid division by zero.h(x)=(x7)h(x) = (x - 7) for x7x \neq -7
  3. Evaluate h(x)h(x) at x=7x = -7: Now that we have simplified the function, we can evaluate h(x)h(x) at x=7x = -7.
    h(7)=(77)h(-7) = (-7 - 7)
    h(7)=14h(-7) = -14

More problems from Domain and range of quadratic functions: equations