Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=-(2x)/((x+1)^(2)).
Select the correct description of the one-sided limits of 
h at 
x=-1.
Choose 1 answer:
(A)

{:[lim_(x rarr-1^(+))h(x)=+oo" and "],[lim_(x rarr-1^(-))h(x)=+oo]:}
(B)

{:[lim_(x rarr-1^(+))h(x)=+oo" and "],[lim_(x rarr-1^(-))h(x)=-oo]:}
(C)

{:[lim_(x rarr-1^(+))h(x)=-oo" and "],[lim_(x rarr-1^(-))h(x)=+oo]:}
(D)

{:[lim_(x rarr-1^(+))h(x)=-oo" and "],[lim_(x rarr-1^(-))h(x)=-oo]:}

Let h(x)=2x(x+1)2 h(x)=-\frac{2 x}{(x+1)^{2}} .\newlineSelect the correct description of the one-sided limits of h h at x=1 x=-1 .\newlineChoose 11 answer:\newline(A)\newlinelimx1+h(x)=+ and limx1h(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=+\infty \end{array} \newline(B)\newlinelimx1+h(x)=+ and limx1h(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=-\infty \end{array} \newline(C)\newlinelimx1+h(x)= and limx1h(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=+\infty \end{array} \newline(D)\newlinelimx1+h(x)= and limx1h(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=-\infty \end{array}

Full solution

Q. Let h(x)=2x(x+1)2 h(x)=-\frac{2 x}{(x+1)^{2}} .\newlineSelect the correct description of the one-sided limits of h h at x=1 x=-1 .\newlineChoose 11 answer:\newline(A)\newlinelimx1+h(x)=+ and limx1h(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=+\infty \end{array} \newline(B)\newlinelimx1+h(x)=+ and limx1h(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=-\infty \end{array} \newline(C)\newlinelimx1+h(x)= and limx1h(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=+\infty \end{array} \newline(D)\newlinelimx1+h(x)= and limx1h(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=-\infty \end{array}
  1. Analyze Behavior as xx Approaches 1-1: Analyze the behavior of h(x)h(x) as xx approaches 1-1 from the right (x1+x \to -1^+).\newlineWe need to consider the sign of the numerator and the denominator separately as xx approaches 1-1 from the right. The numerator, 2x-2x, will be negative since xx is close to 1-1. The denominator, 1-111, will be a small positive number squared, which is also positive. A negative divided by a positive is negative, so the limit will approach negative infinity.
  2. Calculate Right-Hand Limit: Calculate the right-hand limit of h(x)h(x) as xx approaches 1-1.
    limx1+h(x)=limx1+2x(x+1)2\lim_{x \to -1^+} h(x) = \lim_{x \to -1^+} -\frac{2x}{(x+1)^2}
    As xx approaches 1-1 from the right, the denominator approaches 00 and the expression becomes a negative number divided by a positive number that is approaching 00, which tends to negative infinity.
    limx1+h(x)=\lim_{x \to -1^+} h(x) = -\infty
  3. Analyze Behavior as xx Approaches 1-1: Analyze the behavior of h(x)h(x) as xx approaches 1-1 from the left (x1x \to -1^-).\newlineWe need to consider the sign of the numerator and the denominator separately as xx approaches 1-1 from the left. The numerator, 2x-2x, will be negative since xx is close to 1-1. The denominator, 1-111, will again be a small positive number squared, which is also positive. A negative divided by a positive is negative, so the limit will approach negative infinity.
  4. Calculate Left-Hand Limit: Calculate the left-hand limit of h(x)h(x) as xx approaches 1-1.
    limx1h(x)=limx12x(x+1)2\lim_{x \to -1^-} h(x) = \lim_{x \to -1^-} -\frac{2x}{(x+1)^2}
    As xx approaches 1-1 from the left, the denominator approaches 00 and the expression becomes a negative number divided by a positive number that is approaching 00, which tends to negative infinity.
    limx1h(x)=\lim_{x \to -1^-} h(x) = -\infty

More problems from Transformations of quadratic functions