Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(-x^(3)+4x)/(4x^(3)-2x^(2)+4).
Find 
lim_(x rarr oo)g(x).
Choose 1 answer:
(A) 
-(1)/(4)
(B) 1
(C) 0
(D) The limit is unbounded

Let g(x)=x3+4x4x32x2+4 g(x)=\frac{-x^{3}+4 x}{4 x^{3}-2 x^{2}+4} .\newlineFind limxg(x) \lim _{x \rightarrow \infty} g(x) .\newlineChoose 11 answer:\newline(A) 14 -\frac{1}{4} \newline(B) 11\newline(C) 00\newline(D) The limit is unbounded

Full solution

Q. Let g(x)=x3+4x4x32x2+4 g(x)=\frac{-x^{3}+4 x}{4 x^{3}-2 x^{2}+4} .\newlineFind limxg(x) \lim _{x \rightarrow \infty} g(x) .\newlineChoose 11 answer:\newline(A) 14 -\frac{1}{4} \newline(B) 11\newline(C) 00\newline(D) The limit is unbounded
  1. Given function: We are given the function g(x)=x3+4x4x32x2+4g(x) = \frac{-x^3 + 4x}{4x^3 - 2x^2 + 4}. To find the limit as xx approaches infinity, we can divide the numerator and the denominator by the highest power of xx in the denominator, which is x3x^3.
  2. Dividing numerator and denominator: Divide each term in the numerator and the denominator by x3x^3: g(x)=(x3/x3)+(4x/x3)(4x3/x3)(2x2/x3)+(4/x3)g(x) = \frac{(-x^3/x^3) + (4x/x^3)}{(4x^3/x^3) - (2x^2/x^3) + (4/x^3)}
  3. Simplifying terms: Simplify each term:\newlineg(x)=(1)+4x242x+4x3g(x) = \frac{(-1) + \frac{4}{x^2}}{4 - \frac{2}{x} + \frac{4}{x^3}}
  4. Ignoring terms with x in the denominator: As xx approaches infinity, the terms with xx in the denominator approach 00. Therefore, we can ignore these terms for the limit calculation: limxg(x)=1+040+0\lim_{x \to \infty} g(x) = \frac{-1 + 0}{4 - 0 + 0}
  5. Finding the limit: Simplify the expression to find the limit: limxg(x)=14\lim_{x \to \infty} g(x) = -\frac{1}{4}

More problems from Power rule