Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(2)/(x+3).
Select the correct description of the one-sided limits of 
g at 
x=-3.
Choose 1 answer:
(A)

{:[lim_(x rarr-3^(+))g(x)=+oo" and "],[lim_(x rarr-3^(-))g(x)=+oo]:}
(B)

{:[lim_(x rarr-3^(+))g(x)=+oo" and "],[lim_(x rarr-3^(-))g(x)=-oo]:}
(C)

{:[lim_(x rarr-3^(+))g(x)=-oo" and "],[lim_(x rarr-3^(-))g(x)=+oo]:}
(D

{:[lim_(x rarr-3^(+))g(x)=-oo" and "],[lim_(x rarr-3^(-))g(x)=-oo]:}

Let g(x)=2x+3 g(x)=\frac{2}{x+3} .\newlineSelect the correct description of the one-sided limits of g g at x=3 x=-3 .\newlineChoose 11 answer:\newline(A)\newlinelimx3+g(x)=+ and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx3+g(x)=+ and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=-\infty \end{array} \newline(C)\newlinelimx3+g(x)= and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=+\infty \end{array} \newline(D\newlinelimx3+g(x)= and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=-\infty \end{array}

Full solution

Q. Let g(x)=2x+3 g(x)=\frac{2}{x+3} .\newlineSelect the correct description of the one-sided limits of g g at x=3 x=-3 .\newlineChoose 11 answer:\newline(A)\newlinelimx3+g(x)=+ and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx3+g(x)=+ and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=-\infty \end{array} \newline(C)\newlinelimx3+g(x)= and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=+\infty \end{array} \newline(D\newlinelimx3+g(x)= and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=-\infty \end{array}
  1. Approach Analysis: To find the one-sided limits of g(x)g(x) as xx approaches 3-3, we need to consider the behavior of the function as xx gets very close to 3-3 from both the left (x3x \to -3^-) and the right (x3+x \to -3^+).
  2. Right Limit Calculation: First, let's consider the limit as xx approaches 3-3 from the right (x3+x \to -3^+). As xx gets closer to 3-3 from the right, the denominator (x+3x+3) gets closer to 00 and the value of g(x)g(x) increases without bound. Since the numerator is positive (22), the function approaches positive infinity.
  3. Left Limit Calculation: Now, let's calculate the limit as xx approaches 3-3 from the left (x3x \to -3^-). As xx gets closer to 3-3 from the left, the denominator (x+3x+3) again gets closer to 00, but now from the negative side. This means that the value of g(x)g(x) decreases without bound. Since the numerator is positive (22), the function approaches negative infinity.
  4. Final Results: Based on the calculations, the one-sided limits of g(x)g(x) as xx approaches 3-3 are as follows:\newlinelimx3+g(x)=+\lim_{x \to -3^+} g(x) = +\infty\newlinelimx3g(x)=\lim_{x \to -3^-} g(x) = -\infty

More problems from Transformations of quadratic functions