Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(10 x)/(x^(3)+5x) when 
x!=0.

g is continuous for all real numbers.
Find 
g(0).
Choose 1 answer:
(A) 0
(B) 2
(c) 5
(D) 10

Let g(x)=10xx3+5x g(x)=\frac{10 x}{x^{3}+5 x} when x0 x \neq 0 .\newlineg g is continuous for all real numbers.\newlineFind g(0) g(0) .\newlineChoose 11 answer:\newline(A) 00\newline(B) 22\newline(C) 55\newline(D) 10 \mathbf{1 0}

Full solution

Q. Let g(x)=10xx3+5x g(x)=\frac{10 x}{x^{3}+5 x} when x0 x \neq 0 .\newlineg g is continuous for all real numbers.\newlineFind g(0) g(0) .\newlineChoose 11 answer:\newline(A) 00\newline(B) 22\newline(C) 55\newline(D) 10 \mathbf{1 0}
  1. Evaluate Limit: To find the value of g(0)g(0), we need to evaluate the limit of g(x)g(x) as xx approaches 00, because the function is not defined at x=0x = 0 due to division by zero.
  2. Simplify Function: The function g(x)g(x) can be simplified by factoring out xx in the denominator: g(x)=10xx(x2+5)g(x) = \frac{10x}{x(x^2 + 5)}
  3. Cancel Common Factor: After canceling out the common factor xx from the numerator and denominator, we get: g(x)=10x2+5g(x) = \frac{10}{x^2 + 5}
  4. Substitute x=0x = 0: Now we can safely substitute x=0x = 0 into the simplified function to find g(0)g(0):g(0)=10(02+5)=105g(0) = \frac{10}{(0^2 + 5)} = \frac{10}{5}
  5. Perform Division: Perform the division to find the value of g(0)g(0):g(0)=105=2g(0) = \frac{10}{5} = 2

More problems from Domain and range of quadratic functions: equations