Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=sqrtx.

f^(')(x)=

Let f(x)=x f(x)=\sqrt{x} .\newlinef(x)= f^{\prime}(x)=

Full solution

Q. Let f(x)=x f(x)=\sqrt{x} .\newlinef(x)= f^{\prime}(x)=
  1. Recall Power Rule: Recall the power rule for differentiation, which states that if f(x)=xnf(x) = x^n, then f(x)=nx(n1)f'(x) = n \cdot x^{(n-1)}.
  2. Rewrite in Exponent Form: Rewrite the square root function in exponent form: f(x)=x12f(x) = x^{\frac{1}{2}}.
  3. Apply Power Rule: Apply the power rule to differentiate f(x)=x12f(x) = x^{\frac{1}{2}}. This gives us f(x)=(12)x(121)f'(x) = \left(\frac{1}{2}\right)\cdot x^{\left(\frac{1}{2}-1\right)}.
  4. Simplify Exponent: Simplify the exponent in the derivative: f(x)=(12)x(12)f'(x) = (\frac{1}{2})\cdot x^{(-\frac{1}{2})}.
  5. Rewrite in Radical Form: Rewrite the derivative in radical form to avoid negative exponents: f(x)=121xf'(x) = \frac{1}{2}\cdot\frac{1}{\sqrt{x}}.
  6. Combine Constants: Combine the constants and the radical to get the final simplified form of the derivative: f(x)=12xf'(x) = \frac{1}{2\sqrt{x}}.

More problems from Find trigonometric ratios using multiple identities