Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=4x-15. Find each of the following:

{:[f(a)=],[2f(a)=],[f(2a)=]:}

f(a+2)=

f(a)+f(2)=

Let f(x)=4x15 f(x)=4 x-15 . Find each of the following:\newlinef(a)=2f(a)=f(2a)= \begin{array}{l} f(a)= \\ 2 f(a)= \\ f(2 a)= \end{array} \newlinef(a+2)= f(a+2)= \newlinef(a)+f(2)= f(a)+f(2)=

Full solution

Q. Let f(x)=4x15 f(x)=4 x-15 . Find each of the following:\newlinef(a)=2f(a)=f(2a)= \begin{array}{l} f(a)= \\ 2 f(a)= \\ f(2 a)= \end{array} \newlinef(a+2)= f(a+2)= \newlinef(a)+f(2)= f(a)+f(2)=
  1. Substitute aa for f(a)f(a): To find f(a)f(a), substitute aa for xx in the function f(x)=4x15f(x) = 4x - 15.
    f(a)=4a15f(a) = 4a - 15
  2. Multiply by 22: To find 2f(a)2f(a), multiply the result of f(a)f(a) by 22.\newline2f(a)=2(4a15)=8a302f(a) = 2(4a - 15) = 8a - 30
  3. Substitute 2a2a: To find f(2a)f(2a), substitute 2a2a for xx in the function f(x)=4x15f(x) = 4x - 15.\newlinef(2a)=4(2a)15=8a15f(2a) = 4(2a) - 15 = 8a - 15
  4. Substitute a+2a+2: To find f(a+2)f(a+2), substitute (a+2)(a+2) for xx in the function f(x)=4x15f(x) = 4x - 15.\newlinef(a+2)=4(a+2)15=4a+815=4a7f(a+2) = 4(a+2) - 15 = 4a + 8 - 15 = 4a - 7
  5. Find f(a)+f(2)f(a) + f(2): To find f(a)+f(2)f(a) + f(2), first find f(2)f(2) by substituting 22 for xx in the function f(x)=4x15f(x) = 4x - 15.\newlinef(2)=4(2)15=815=7f(2) = 4(2) - 15 = 8 - 15 = -7\newlineNow, add f(a)f(a) to f(2)f(2).\newlinef(a)+f(2)=(4a15)+(7)=4a157=4a22f(a) + f(2) = (4a - 15) + (-7) = 4a - 15 - 7 = 4a - 22

More problems from Evaluate functions