Let f be the function defined by f(x)=2x. If five subintervals of equal length are used, what is the value of the left Riemann sum approximation for ∫352xdx ? Round to the nearest thousandth if necessary.Answer:
Q. Let f be the function defined by f(x)=2x. If five subintervals of equal length are used, what is the value of the left Riemann sum approximation for ∫352xdx ? Round to the nearest thousandth if necessary.Answer:
Determine Width of Subinterval: Determine the width of each subinterval. The interval from 3 to 5 has a length of 5−3=2. Since we are using five subintervals of equal length, each subinterval will have a width of 52.
Identify Left Endpoints: Identify the x-values for the left endpoints of each subinterval. The left endpoints will be at x=3, 3+52, 3+2(52), 3+3(52), and 3+4(52). These values are x=3, 3.4, 3.8, 4.2, and x=30.
Evaluate Function Values: Evaluate the function f(x)=2x at each left endpoint.f(3)=23=8f(3.4)=23.4≈10.556f(3.8)=23.8≈13.964f(4.2)=24.2≈18.475f(4.6)=24.6≈24.455
Calculate Rectangle Areas: Multiply each function value by the width of the subintervals to find the area of each rectangle.The width of each subinterval is 52, so we multiply each function value by 52:Area1=f(3)×(52)=8×(52)=3.2Area2=f(3.4)×(52)≈10.556×(52)≈4.222Area3=f(3.8)×(52)≈13.964×(52)≈5.586Area4=f(4.2)×(52)≈18.475×(52)≈7.39Area5=f(4.6)×(52)≈24.455×(52)≈9.782
Find Riemann Sum: Add the areas of the rectangles to find the left Riemann sum approximation.Left Riemann Sum =Area1+Area2+Area3+Area4+Area5≈3.2+4.222+5.586+7.39+9.782≈30.18
More problems from Find trigonometric ratios using reference angles