Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be the function defined by 
f(x)=2^(x). If five subintervals of equal length are used, what is the value of the left Riemann sum approximation for 
int_(3)^(5)2^(x)dx ? Round to the nearest thousandth if necessary.
Answer:

Let f f be the function defined by f(x)=2x f(x)=2^{x} . If five subintervals of equal length are used, what is the value of the left Riemann sum approximation for 352xdx \int_{3}^{5} 2^{x} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:

Full solution

Q. Let f f be the function defined by f(x)=2x f(x)=2^{x} . If five subintervals of equal length are used, what is the value of the left Riemann sum approximation for 352xdx \int_{3}^{5} 2^{x} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:
  1. Determine Width of Subinterval: Determine the width of each subinterval. The interval from 33 to 55 has a length of 53=25 - 3 = 2. Since we are using five subintervals of equal length, each subinterval will have a width of 25\frac{2}{5}.
  2. Identify Left Endpoints: Identify the xx-values for the left endpoints of each subinterval. The left endpoints will be at x=3x = 3, 3+253 + \frac{2}{5}, 3+2(25)3 + 2\left(\frac{2}{5}\right), 3+3(25)3 + 3\left(\frac{2}{5}\right), and 3+4(25)3 + 4\left(\frac{2}{5}\right). These values are x=3x = 3, 3.43.4, 3.83.8, 4.24.2, and x=3x = 300.
  3. Evaluate Function Values: Evaluate the function f(x)=2xf(x) = 2^x at each left endpoint.f(3)=23=8f(3) = 2^3 = 8f(3.4)=23.410.556f(3.4) = 2^{3.4} \approx 10.556f(3.8)=23.813.964f(3.8) = 2^{3.8} \approx 13.964f(4.2)=24.218.475f(4.2) = 2^{4.2} \approx 18.475f(4.6)=24.624.455f(4.6) = 2^{4.6} \approx 24.455
  4. Calculate Rectangle Areas: Multiply each function value by the width of the subintervals to find the area of each rectangle.\newlineThe width of each subinterval is 25\frac{2}{5}, so we multiply each function value by 25\frac{2}{5}:\newlineArea1=f(3)×(25)=8×(25)=3.2\text{Area}_1 = f(3) \times \left(\frac{2}{5}\right) = 8 \times \left(\frac{2}{5}\right) = 3.2\newlineArea2=f(3.4)×(25)10.556×(25)4.222\text{Area}_2 = f(3.4) \times \left(\frac{2}{5}\right) \approx 10.556 \times \left(\frac{2}{5}\right) \approx 4.222\newlineArea3=f(3.8)×(25)13.964×(25)5.586\text{Area}_3 = f(3.8) \times \left(\frac{2}{5}\right) \approx 13.964 \times \left(\frac{2}{5}\right) \approx 5.586\newlineArea4=f(4.2)×(25)18.475×(25)7.39\text{Area}_4 = f(4.2) \times \left(\frac{2}{5}\right) \approx 18.475 \times \left(\frac{2}{5}\right) \approx 7.39\newlineArea5=f(4.6)×(25)24.455×(25)9.782\text{Area}_5 = f(4.6) \times \left(\frac{2}{5}\right) \approx 24.455 \times \left(\frac{2}{5}\right) \approx 9.782
  5. Find Riemann Sum: Add the areas of the rectangles to find the left Riemann sum approximation.\newlineLeft Riemann Sum =Area1+Area2+Area3+Area4+Area5= \text{Area}_1 + \text{Area}_2 + \text{Area}_3 + \text{Area}_4 + \text{Area}_5\newline3.2+4.222+5.586+7.39+9.782\approx 3.2 + 4.222 + 5.586 + 7.39 + 9.782\newline30.18\approx 30.18

More problems from Find trigonometric ratios using reference angles