Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be a function such that 
f(-1)=3 and 
f^(')(-1)=5.
Let 
g be the function 
g(x)=2x^(3).

Let 
F be a function defined as 
F(x)=(f(x))/(g(x)).

F^(')(-1)=

- Let f f be a function such that f(1)=3 f(-1)=3 and f(1)=5 f^{\prime}(-1)=5 .\newline- Let g g be the function g(x)=2x3 g(x)=2 x^{3} .\newlineLet F F be a function defined as F(x)=f(x)g(x) F(x)=\frac{f(x)}{g(x)} .\newlineF(1)= F^{\prime}(-1)=

Full solution

Q. - Let f f be a function such that f(1)=3 f(-1)=3 and f(1)=5 f^{\prime}(-1)=5 .\newline- Let g g be the function g(x)=2x3 g(x)=2 x^{3} .\newlineLet F F be a function defined as F(x)=f(x)g(x) F(x)=\frac{f(x)}{g(x)} .\newlineF(1)= F^{\prime}(-1)=
  1. Apply Quotient Rule: To find F(1)F'(-1), we need to use the quotient rule for differentiation, which states that if F(x)=f(x)g(x)F(x) = \frac{f(x)}{g(x)}, then F(x)=f(x)g(x)f(x)g(x)(g(x))2F'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}. We are given f(1)=3f(-1) = 3 and f(1)=5f'(-1) = 5. We also have g(x)=2x3g(x) = 2x^3, so we need to find g(1)g(-1) and g(1)g'(-1).
  2. Find g(1)g(-1): First, let's find g(1)g(-1) by substituting 1-1 into g(x)g(x):
    g(1)=2(1)3g(-1) = 2(-1)^3
    g(1)=2(1)g(-1) = 2(-1)
    g(1)=2g(-1) = -2
  3. Find g(1)g'(-1): Next, we need to find g(1)g'(-1). To do this, we first differentiate g(x)g(x) with respect to xx:
    g(x)=ddx[2x3]g'(x) = \frac{d}{dx} [2x^3]
    g(x)=23x31g'(x) = 2 \cdot 3x^{3-1}
    g(x)=6x2g'(x) = 6x^2
    Now we substitute 1-1 into g(x)g'(x) to find g(1)g'(-1):
    g(1)g'(-1)00
    g(1)g'(-1)11
    g(1)g'(-1)22
  4. Apply Quotient Rule: Now we have all the values we need to apply the quotient rule:\newlineF(1)=f(1)g(1)f(1)g(1)(g(1))2F'(-1) = \frac{f'(-1)g(-1) - f(-1)g'(-1)}{(g(-1))^2}\newlineF(1)=(5236)(2)2F'(-1) = \frac{(5 \cdot -2 - 3 \cdot 6)}{(-2)^2}
  5. Simplify Numerator and Denominator: Let's simplify the numerator and the denominator separately:\newlineNumerator: 5×23×6=1018=285 \times -2 - 3 \times 6 = -10 - 18 = -28\newlineDenominator: (2)2=4(-2)^2 = 4
  6. Find F(1)F'(-1): Now we can find F(1)F'(-1):F(1)=284F'(-1) = \frac{-28}{4}F(1)=7F'(-1) = -7

More problems from Evaluate functions