Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
a,b,c be the three rational numbers where 
a=(2)/(3)quad b=(4)/(5) and 
c=(-5)/(6) and Verify:
(i) 
a+(b+c)=(a+b)+c (Associative property of addition)

Let a,b,c a, b, c be the three rational numbers where a=23b=45 a=\frac{2}{3} \quad b=\frac{4}{5} and c=56 c=\frac{-5}{6} and Verify:\newline(i) a+(b+c)=(a+b)+c \mathrm{a}+(\mathrm{b}+\mathrm{c})=(\mathrm{a}+\mathrm{b})+\mathrm{c} (Associative property of addition)

Full solution

Q. Let a,b,c a, b, c be the three rational numbers where a=23b=45 a=\frac{2}{3} \quad b=\frac{4}{5} and c=56 c=\frac{-5}{6} and Verify:\newline(i) a+(b+c)=(a+b)+c \mathrm{a}+(\mathrm{b}+\mathrm{c})=(\mathrm{a}+\mathrm{b})+\mathrm{c} (Associative property of addition)
  1. Calculate Sum of Fractions: First, we will calculate the sum of bb and cc, and then add aa to the result.b+c=(45)+(56)b + c = \left(\frac{4}{5}\right) + \left(-\frac{5}{6}\right)To add these fractions, we need a common denominator, which is 3030. So, we convert the fractions to have the same denominator:b=(45)(66)=(2430)b = \left(\frac{4}{5}\right) \cdot \left(\frac{6}{6}\right) = \left(\frac{24}{30}\right)c=(56)(55)=(2530)c = \left(-\frac{5}{6}\right) \cdot \left(\frac{5}{5}\right) = \left(-\frac{25}{30}\right)Now, we add bb and cc:b+c=(2430)+(2530)=(242530)=130b + c = \left(\frac{24}{30}\right) + \left(-\frac{25}{30}\right) = \left(\frac{24 - 25}{30}\right) = -\frac{1}{30}
  2. Add aa to the Result: Next, we add aa to the result of b+cb + c.\newlinea+(b+c)=23+(130)a + (b + c) = \frac{2}{3} + \left(-\frac{1}{30}\right)\newlineAgain, we need a common denominator, which is 3030.\newlineSo, we convert aa to have the same denominator:\newlinea=(23)(1010)=2030a = \left(\frac{2}{3}\right) * \left(\frac{10}{10}\right) = \frac{20}{30}\newlineNow, we add aa to the result of b+cb + c:\newlinea+(b+c)=2030+(130)=20130=1930a + (b + c) = \frac{20}{30} + \left(-\frac{1}{30}\right) = \frac{20 - 1}{30} = \frac{19}{30}
  3. Calculate Sum of Fractions: Now, we will calculate the sum of aa and bb, and then add cc to the result.a+b=23+45a + b = \frac{2}{3} + \frac{4}{5}To add these fractions, we need a common denominator, which is 1515.So, we convert the fractions to have the same denominator:a=23×55=1015a = \frac{2}{3} \times \frac{5}{5} = \frac{10}{15}b=45×33=1215b = \frac{4}{5} \times \frac{3}{3} = \frac{12}{15}Now, we add aa and bb:a+b=1015+1215=10+1215=2215a + b = \frac{10}{15} + \frac{12}{15} = \frac{10 + 12}{15} = \frac{22}{15}
  4. Add cc to the Result: Finally, we add cc to the result of a+ba + b.(a+b)+c=(2215)+(56)(a + b) + c = \left(\frac{22}{15}\right) + \left(-\frac{5}{6}\right)To add these fractions, we need a common denominator, which is 3030. So, we convert the fractions to have the same denominator:(a+b)=(2215)(22)=(4430)(a + b) = \left(\frac{22}{15}\right) * \left(\frac{2}{2}\right) = \left(\frac{44}{30}\right)c=(56)(55)=(2530)c = \left(-\frac{5}{6}\right) * \left(\frac{5}{5}\right) = \left(-\frac{25}{30}\right)Now, we add (a+b)(a + b) and cc:(a+b)+c=(4430)+(2530)=442530=1930(a + b) + c = \left(\frac{44}{30}\right) + \left(-\frac{25}{30}\right) = \frac{44 - 25}{30} = \frac{19}{30}

More problems from Transformations of quadratic functions