Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant 
I, and 
sin(theta_(1))=(17)/(20).
What is the value of 
cos(theta_(1)) ?
Express your answer exactly.

cos(theta_(1))=

\newlineThe angle θ1 \theta_{1} is located in Quadrant I \mathrm{I} , and sin(θ1)=1720 \sin \left(\theta_{1}\right)=\frac{17}{20} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=

Full solution

Q. \newlineThe angle θ1 \theta_{1} is located in Quadrant I \mathrm{I} , and sin(θ1)=1720 \sin \left(\theta_{1}\right)=\frac{17}{20} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=
  1. Understand Relationship: Understand the relationship between sine and cosine in a right triangle.\newlineIn a right triangle, the sine of an angle is the ratio of the length of the opposite side to the hypotenuse, while the cosine is the ratio of the length of the adjacent side to the hypotenuse. For an angle θ1\theta_1 in the first quadrant, both sine and cosine values are positive. We can use the Pythagorean theorem to find the cosine if we know the sine.
  2. Use Pythagorean Identity: Use the Pythagorean identity to find cos(θ1)\cos(\theta_1). The Pythagorean identity states that sin2(θ1)+cos2(θ1)=1\sin^2(\theta_1) + \cos^2(\theta_1) = 1. We can solve for cos2(θ1)\cos^2(\theta_1) by substituting the given value of sin(θ1)\sin(\theta_1). sin2(θ1)+cos2(θ1)=1\sin^2(\theta_1) + \cos^2(\theta_1) = 1 (1720)2+cos2(θ1)=1\left(\frac{17}{20}\right)^2 + \cos^2(\theta_1) = 1
  3. Calculate sin2\sin^2: Calculate sin2(θ1)\sin^2(\theta_1).(1720)2=(172202)=289400\left(\frac{17}{20}\right)^2 = \left(\frac{17^2}{20^2}\right) = \frac{289}{400}
  4. Substitute and Solve: Substitute sin2(θ1)\sin^2(\theta_1) into the Pythagorean identity and solve for cos2(θ1)\cos^2(\theta_1).289400+cos2(θ1)=1\frac{289}{400} + \cos^2(\theta_1) = 1cos2(θ1)=1289400\cos^2(\theta_1) = 1 - \frac{289}{400}cos2(θ1)=400400289400\cos^2(\theta_1) = \frac{400}{400} - \frac{289}{400}cos2(θ1)=400289400\cos^2(\theta_1) = \frac{400 - 289}{400}cos2(θ1)=111400\cos^2(\theta_1) = \frac{111}{400}
  5. Find cos(θ1):\cos(\theta_1): Find the value of cos(θ1)\cos(\theta_1). Since θ1\theta_1 is in the first quadrant, cos(θ1)\cos(\theta_1) will be positive. Therefore, we take the positive square root of cos2(θ1)\cos^2(\theta_1). cos(θ1)=111400\cos(\theta_1) = \sqrt{\frac{111}{400}} cos(θ1)=111400\cos(\theta_1) = \frac{\sqrt{111}}{\sqrt{400}} cos(θ1)=11120\cos(\theta_1) = \frac{\sqrt{111}}{20}

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity