Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.
-6x^(2)+6-2x=x
Choose 1 answer:
(A) x=(5+-sqrt57)/(16)
(B) x=(-4+-sqrt34)/(3)
(C) x=(-7+-3sqrt41)/(-16)
(D) x=(1+-sqrt17)/(-4)

Solve.\newline6x2+62x=x -6 x^{2}+6-2 x=x \newlineChoose 11 answer:\newline(A) x=5±5716 x=\frac{5 \pm \sqrt{57}}{16} \newline(B) x=4±343 x=\frac{-4 \pm \sqrt{34}}{3} \newline(C) x=7±34116 x=\frac{-7 \pm 3 \sqrt{41}}{-16} \newline(D) x=1±174 x=\frac{1 \pm \sqrt{17}}{-4}

Full solution

Q. Solve.\newline6x2+62x=x -6 x^{2}+6-2 x=x \newlineChoose 11 answer:\newline(A) x=5±5716 x=\frac{5 \pm \sqrt{57}}{16} \newline(B) x=4±343 x=\frac{-4 \pm \sqrt{34}}{3} \newline(C) x=7±34116 x=\frac{-7 \pm 3 \sqrt{41}}{-16} \newline(D) x=1±174 x=\frac{1 \pm \sqrt{17}}{-4}
  1. Bring terms together: First, we need to bring all terms to one side of the equation to set it equal to zero. We do this by subtracting xx from both sides of the equation.\newline6x2+62xx=0-6x^2 + 6 - 2x - x = 0\newlineThis simplifies to:\newline6x23x+6=0-6x^2 - 3x + 6 = 0
  2. Solve quadratic equation: Next, we need to solve the quadratic equation. We can do this by using the quadratic formula, which is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where aa, bb, and cc are the coefficients from the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0. In our case, a=6a = -6, b=3b = -3, and c=6c = 6.
  3. Plug values into formula: Now we will plug the values of aa, bb, and cc into the quadratic formula.\newlinex=(3)±(3)24(6)(6)2(6)x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(-6)(6)}}{2(-6)}\newlineThis simplifies to:\newlinex=3±9+14412x = \frac{3 \pm \sqrt{9 + 144}}{-12}\newlinex=3±15312x = \frac{3 \pm \sqrt{153}}{-12}
  4. Simplify square root: We simplify 153\sqrt{153} to get the exact values for xx. 153\sqrt{153} is not a perfect square, so we leave it as is. x=3±15312x = \frac{3 \pm \sqrt{153}}{-12}
  5. Divide by common divisor: We can simplify the fraction by dividing the numerator and the denominator by their greatest common divisor, which is 33 in this case.\newlinex=(1±153/3)/(4)x = (1 \pm \sqrt{153}/3) / (-4)\newlineSince 153/3\sqrt{153}/3 is not a simplifiable square root, we leave it as is.\newlinex=(1±153/3)/(4)x = (1 \pm \sqrt{153}/3) / (-4)
  6. Match with answer choice: Now we look at the answer choices to see which one matches our result. We notice that 153\sqrt{153} is the same as (179)\sqrt{(17\cdot9)}, which simplifies to 3173\sqrt{17}. So our equation becomes:\newlinex=(1±317)(4)x = \frac{(1 \pm 3\sqrt{17})}{(-4)}\newlineThis matches answer choice (D).

More problems from Sum of finite series starts from 1