Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:



{:[f^(')(x)=12e^(x)" and "f(4)=-16+12e^(4)] ,Find [f(0)=]:}

f(x)f'(x) = 12ex12e^x and f(4)f(4) = 16+12e4-16 + 12e^4. Find f(0)f(0).

Full solution

Q. f(x)f'(x) = 12ex12e^x and f(4)f(4) = 16+12e4-16 + 12e^4. Find f(0)f(0).
  1. Identify derivative and function value: Identify the derivative and the function value at x=4x=4. f(x)=12exf'(x) = 12e^x, f(4)=16+12e4f(4) = -16 + 12e^4
  2. Use derivative to find general form: Use the derivative to find the general form of f(x)f(x). Since f(x)=12exf'(x) = 12e^x, integrate to find f(x)f(x). f(x)=12ex+Cf(x) = 12e^x + C, where CC is the constant of integration.
  3. Find constant using given value: Use the given f(4)f(4) to find the constant CC.\newlinef(4)=16+12e4=12e4+Cf(4) = -16 + 12e^4 = 12e^4 + C\newlineSolve for CC: C=16+12e412e4=16C = -16 + 12e^4 - 12e^4 = -16
  4. Write complete function: Write the complete function f(x)f(x).f(x)=12ex16f(x) = 12e^x - 16
  5. Calculate f(0)f(0): Calculate f(0)f(0) using the complete function.\newlinef(0)=12e016=12(1)16=4f(0) = 12e^0 - 16 = 12(1) - 16 = -4

More problems from Evaluate integers raised to rational exponents