Identify derivative and function value: Identify the derivative and the function value at x=4. f′(x)=12ex, f(4)=−16+12e4
Use derivative to find general form: Use the derivative to find the general form of f(x). Since f′(x)=12ex, integrate to find f(x). f(x)=12ex+C, where C is the constant of integration.
Find constant using given value: Use the given f(4) to find the constant C.f(4)=−16+12e4=12e4+CSolve for C: C=−16+12e4−12e4=−16
Write complete function: Write the complete function f(x).f(x)=12ex−16
Calculate f(0): Calculate f(0) using the complete function.f(0)=12e0−16=12(1)−16=−4
More problems from Evaluate integers raised to rational exponents