Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

intx^(2)cos(2x+1)dx

x2cos(2x+1)dx \int x^{2} \cos (2 x+1) d x

Full solution

Q. x2cos(2x+1)dx \int x^{2} \cos (2 x+1) d x
  1. Integration by Parts: To solve the integral of x2cos(2x+1)x^2 \cos(2x+1) with respect to xx, we will use integration by parts, which is based on the product rule for differentiation and is given by the formula:\newlineudv=uvvdu\int u \, dv = uv - \int v \, du\newlineWe need to choose uu and dvdv such that the resulting integral is simpler than the original one.\newlineLet's choose:\newlineu=x2u = x^2 (which means du=2xdxdu = 2x \, dx)\newlinedv=cos(2x+1)dxdv = \cos(2x+1) \, dx (which means v=cos(2x+1)dxv = \int\cos(2x+1) \, dx)
  2. Finding vv: Now we need to find vv by integrating dvdv. To integrate cos(2x+1)\cos(2x+1), we can use a substitution method. Let w=2x+1w = 2x+1, which implies dw=2dxdw = 2 dx or dx=dw2dx = \frac{dw}{2}.\newlinecos(2x+1)dx=cos(w)(dw2)=(12)cos(w)dw\int \cos(2x+1) dx = \int \cos(w) \left(\frac{dw}{2}\right) = \left(\frac{1}{2}\right) \int \cos(w) dw\newlineThe integral of cos(w)\cos(w) with respect to ww is vv00, so we have:\newlinevv11
  3. Applying Integration by Parts: Now we can apply the integration by parts formula:\newlinex2cos(2x+1)dx=uvvdu\int x^2 \cos(2x+1) \, dx = uv - \int v \, du\newline= x2(12)sin(2x+1)(12)sin(2x+1)2xdxx^2 \cdot (\frac{1}{2}) \sin(2x+1) - \int (\frac{1}{2}) \sin(2x+1) \cdot 2x \, dx\newline= (12)x2sin(2x+1)xsin(2x+1)dx(\frac{1}{2}) x^2 \sin(2x+1) - \int x \sin(2x+1) \, dx
  4. Second Integration by Parts: The remaining integral, xsin(2x+1)dx\int x \sin(2x+1) \, dx, still requires integration by parts. We will again choose new uu and dvdv:u=xu = x (which means du=dxdu = dx)dv=sin(2x+1)dxdv = \sin(2x+1) \, dx (which means v=12cos(2x+1)v = -\frac{1}{2} \cos(2x+1))
  5. Combining Results: Applying integration by parts to the remaining integral:\newlinexsin(2x+1)dx=uvvdu\int x \sin(2x+1) \, dx = uv - \int v \, du\newline= x(12)cos(2x+1)(12)cos(2x+1)dxx \cdot (-\frac{1}{2}) \cos(2x+1) - \int(-\frac{1}{2}) \cos(2x+1) \, dx\newline= (12)xcos(2x+1)+(14)sin(2x+1)(-\frac{1}{2}) x \cos(2x+1) + (\frac{1}{4}) \sin(2x+1)
  6. Combining Results: Applying integration by parts to the remaining integral:\newlinexsin(2x+1)dx=uvvdu\int x \sin(2x+1) \, dx = uv - \int v \, du\newline= x(12)cos(2x+1)(12)cos(2x+1)dxx \cdot (-\frac{1}{2}) \cos(2x+1) - \int (-\frac{1}{2}) \cos(2x+1) \, dx\newline= (12)xcos(2x+1)+(14)sin(2x+1)(-\frac{1}{2}) x \cos(2x+1) + (\frac{1}{4}) \sin(2x+1)Now we can combine the results from the two applications of integration by parts:\newlinex2cos(2x+1)dx=(12)x2sin(2x+1)[(12)xcos(2x+1)+(14)sin(2x+1)]\int x^2 \cos(2x+1) \, dx = (\frac{1}{2}) x^2 \sin(2x+1) - [(-\frac{1}{2}) x \cos(2x+1) + (\frac{1}{4}) \sin(2x+1)]\newline= (12)x2sin(2x+1)+(12)xcos(2x+1)(14)sin(2x+1)+C(\frac{1}{2}) x^2 \sin(2x+1) + (\frac{1}{2}) x \cos(2x+1) - (\frac{1}{4}) \sin(2x+1) + C\newlinewhere CC is the constant of integration.

More problems from Simplify radical expressions involving fractions