Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

inttan^(-1)(5x)dx

tan1(5x)dx \int \tan ^{-1}(5 x) d x

Full solution

Q. tan1(5x)dx \int \tan ^{-1}(5 x) d x
  1. Identify integral: Identify the integral that needs to be solved.\newlineWe need to find the integral of the function tan1(5x)\tan^{-1}(5x) with respect to xx.\newlinetan1(5x)dx\int \tan^{-1}(5x)\,dx
  2. Use integration by parts: Use integration by parts.\newlineIntegration by parts formula is udv=uvvdu\int u \, dv = uv - \int v \, du, where uu and dvdv are parts of the integrand.\newlineLet u=tan1(5x)u = \tan^{-1}(5x), which means du=(51+(5x)2)dxdu = \left(\frac{5}{1+(5x)^2}\right)dx.\newlineLet dv=dxdv = dx, which means v=xv = x.
  3. Differentiate and integrate: Differentiate uu and integrate dvdv.\ Differentiate uu to find dudu:\ du=ddx[tan1(5x)]dx=(51+(5x)2)dxdu = \frac{d}{dx}[\tan^{-1}(5x)]dx = \left(\frac{5}{1+(5x)^2}\right)dx\ Integrate dvdv to find vv:\ v=dx=xv = \int dx = x
  4. Apply integration by parts: Apply the integration by parts formula.\newlineNow we have uu, dudu, vv, and dvdv, we can apply the integration by parts formula:\newlinetan1(5x)dx=uvvdu\int \tan^{-1}(5x)\,dx = uv - \int v\,du\newline= (tan1(5x))xx(51+(5x)2)dx(\tan^{-1}(5x)) \cdot x - \int x \cdot \left(\frac{5}{1+(5x)^2}\right)dx
  5. Simplify the integral: Simplify the integral.\newlineWe need to simplify the integral x(51+(5x)2)dx\int x \cdot \left(\frac{5}{1+(5x)^2}\right)dx.\newlineLet's make a substitution to simplify this integral. Let w=1+(5x)2w = 1+(5x)^2, then dw=10xdxdw = 10xdx.
  6. Change variables: Change the variables in the integral.\newlineSubstitute ww and dwdw into the integral:\newlinex(51+(5x)2)dx=12(5w)dw\int x \cdot \left(\frac{5}{1+(5x)^2}\right)dx = \frac{1}{2} \cdot \int\left(\frac{5}{w}\right)dw\newlineWe have the extra 12\frac{1}{2} because dw=10xdxdw = 10xdx, so we need to multiply by 110\frac{1}{10} to get the original xdxxdx, and since we have a 55 in the numerator, 5110=125 \cdot \frac{1}{10} = \frac{1}{2}.
  7. Integrate with respect to ww: Integrate with respect to ww. Now integrate 12×(5w)dw\frac{1}{2} \times \int\left(\frac{5}{w}\right)dw: \frac{\(1\)}{\(2\)} \times \int\left(\frac{\(5\)}{w}\right)dw = \frac{\(1\)}{\(2\)} \times \(5 \times \ln|w| + C = \left(\frac{55}{22}\right) \times \ln|w| + C
  8. Substitute back for x: Substitute back for x.\newlineNow we need to substitute back in for ww to get the integral in terms of xx:\newline52lnw+C=52ln1+(5x)2+C\frac{5}{2} \cdot \ln|w| + C = \frac{5}{2} \cdot \ln|1+(5x)^2| + C
  9. Combine integration results: Combine the results from integration by parts.\newlineCombine the result from Step 44 and Step 88 to get the final answer:\newlinetan1(5x)dx=(tan1(5x))x52ln1+(5x)2+C\int \tan^{-1}(5x)\,dx = (\tan^{-1}(5x)) \cdot x - \frac{5}{2} \cdot \ln|1+(5x)^2| + C

More problems from Evaluate integers raised to rational exponents