Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Integrate.
intsqrtx*arctan sqrtxdx

Integrate.\newlinexarctanxdx \int \sqrt{x} \cdot \operatorname{arctan} \sqrt{x} d x

Full solution

Q. Integrate.\newlinexarctanxdx \int \sqrt{x} \cdot \operatorname{arctan} \sqrt{x} d x
  1. Recognize the integral: Recognize the integral we need to solve.\newlineWe have the integral of the square root of xx times the arc tangent of the square root of xx, which is written as:\newlinexarctan(x)dx\int \sqrt{x} \cdot \arctan(\sqrt{x}) \, dx
  2. Use integration by parts: Use integration by parts.\newlineIntegration by parts is given by the formula:\newlineudv=uvvdu\int u \, dv = uv - \int v \, du\newlineWe need to choose uu and dvdv such that dudu and vv are easier to integrate. Let's choose:\newlineu=arctan(x)u = \arctan(\sqrt{x}) (since its derivative is simpler)\newlinedv=xdxdv = \sqrt{x} \, dx (since its antiderivative is straightforward)
  3. Compute du and v: Compute du and v.\newlineTo find du, we differentiate u with respect to x:\newlinedu=ddx[arctan(x)]dxdu = \frac{d}{dx} [\arctan(\sqrt{x})] dx\newlineUsing the chain rule and the derivative of arctan(x), which is 11+x2\frac{1}{1+x^2}, we get:\newlinedu=1211+x1xdxdu = \frac{1}{2} \cdot \frac{1}{1+x} \cdot \frac{1}{\sqrt{x}} dx\newlineNow, to find v, we integrate dv:\newlinev=xdxv = \int \sqrt{x} dx\newlinev=23x32v = \frac{2}{3} \cdot x^{\frac{3}{2}}
  4. Apply integration by parts formula: Apply the integration by parts formula.\newlineNow we have all the parts needed to apply the integration by parts formula:\newlinexarctan(x)dx=uvvdu\int \sqrt{x} \cdot \arctan(\sqrt{x}) \, dx = uv - \int v \, du\newline= arctan(x)23x3223x32121(1+x)1xdx\arctan(\sqrt{x}) \cdot \frac{2}{3} \cdot x^{\frac{3}{2}} - \int \frac{2}{3} \cdot x^{\frac{3}{2}} \cdot \frac{1}{2} \cdot \frac{1}{(1+x)} \cdot \frac{1}{\sqrt{x}} \, dx
  5. Simplify the integral: Simplify the integral.\newlineSimplify the expression inside the integral:\newline(23)x32(12)(11+x)(1x)dx\int (\frac{2}{3}) \cdot x^{\frac{3}{2}} \cdot (\frac{1}{2}) \cdot (\frac{1}{1+x}) \cdot (\frac{1}{\sqrt{x}}) \, dx\newline= (13)x(11+x)dx\int (\frac{1}{3}) \cdot x \cdot (\frac{1}{1+x}) \, dx\newlineNow we have a simpler integral to solve.
  6. Solve the simplified integral: Solve the simplified integral.\newlineTo solve 13x11+xdx\int \frac{1}{3} \cdot x \cdot \frac{1}{1+x} \, dx, we can use a simple substitution:\newlineLet t=1+xt = 1 + x, then dt=dxdt = dx and x=t1x = t - 1.\newlineOur integral becomes:\newline13(t1)1tdt\int \frac{1}{3} \cdot (t - 1) \cdot \frac{1}{t} \, dt\newline=13(11t)dt= \frac{1}{3} \cdot \int (1 - \frac{1}{t}) \, dt\newline=13(tlnt)= \frac{1}{3} \cdot (t - \ln|t|)\newlineNow we substitute back for x:\newline=13(1+xln1+x)= \frac{1}{3} \cdot (1 + x - \ln|1 + x|)
  7. Write the final answer: Write the final answer.\newlineCombining the result from integration by parts with the solved integral, we get:\newlinexarctan(x)dx=arctan(x)(23)x32(13)(1+xln1+x)+C\int \sqrt{x} \cdot \arctan(\sqrt{x}) \, dx = \arctan(\sqrt{x}) \cdot \left(\frac{2}{3}\right) \cdot x^{\frac{3}{2}} - \left(\frac{1}{3}\right) \cdot (1 + x - \ln|1 + x|) + C\newlinewhere CC is the constant of integration.