Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

earcsinxdx\int e^{\arcsin x}\,dx

Full solution

Q. earcsinxdx\int e^{\arcsin x}\,dx
  1. Recognize the integral: Recognize the integral to be solved.\newlineWe need to find the integral of earcsinxe^{\arcsin x} with respect to xx, which is written as earcsinxdx\int e^{\arcsin x}\,dx.
  2. Use substitution to simplify: Use substitution to simplify the integral.\newlineLet u=arcsinxu = \arcsin x, which implies that x=sinux = \sin u. Then, we need to find dxdx in terms of dudu. Since u=arcsinxu = \arcsin x, we differentiate both sides with respect to xx to get dudx=11x2\frac{du}{dx} = \frac{1}{\sqrt{1 - x^2}}. Therefore, dx=1x2dudx = \sqrt{1 - x^2}du.
  3. Substitute xx and dxdx: Substitute xx and dxdx in the integral.\newlineThe integral becomes eu1sin2udu\int e^u \sqrt{1 - \sin^2 u}\,du. Since sin2u+cos2u=1\sin^2 u + \cos^2 u = 1, we have 1sin2u=cosu\sqrt{1 - \sin^2 u} = \cos u. So the integral simplifies to eucosudu\int e^u \cos u\,du.
  4. Use integration by parts: Use integration by parts.\newlineIntegration by parts states that udv=uvvdu\int u \, dv = uv - \int v \, du. We let u=euu = e^u and dv=cosududv = \cos u \, du. Then du=eududu = e^u \, du and v=sinuv = \sin u. Applying integration by parts gives us eusinusinueudue^u \cdot \sin u - \int \sin u \cdot e^u \, du.
  5. Apply integration by parts again: Apply integration by parts again to the remaining integral.\newlineWe need to integrate sinueudu\int \sin u \cdot e^u \, du. Let's use integration by parts again with u=sinuu = \sin u and dv=eududv = e^u \, du. Then du=cosududu = \cos u \, du and v=euv = e^u. This gives us sinueueucosudu\sin u \cdot e^u - \int e^u \cdot \cos u \, du.
  6. Notice the repeating integral: Notice the repeating integral. We see that eucosudu\int e^u \cdot \cos u \, du appears again. Let's call this integral II. Our equation from Step 44 and Step 55 becomes eusinu(sinueuI)e^u \cdot \sin u - (\sin u \cdot e^u - I), which simplifies to eusinusinueu+I=Ie^u \cdot \sin u - \sin u \cdot e^u + I = I.
  7. Solve for I: Solve for I.\newlineWe have I=eusinusinueu+II = e^u \cdot \sin u - \sin u \cdot e^u + I. Subtracting II from both sides, we get 0=eusinusinueu0 = e^u \cdot \sin u - \sin u \cdot e^u, which implies that I=eusinuI = e^u \cdot \sin u.
  8. Substitute back in terms of x: Substitute back in terms of x.\newlineWe originally let u=arcsinxu = \arcsin x, so we substitute back to get I=earcsinxsin(arcsinx)I = e^{\arcsin x} \cdot \sin(\arcsin x). Since sin(arcsinx)=x\sin(\arcsin x) = x, our integral I=earcsinxxI = e^{\arcsin x} \cdot x.
  9. Add the constant of integration: Add the constant of integration.\newlineThe final answer is I=earcsinxx+CI = e^{\arcsin x} \cdot x + C, where CC is the constant of integration.

More problems from Sin, cos, and tan of special angles