Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

arcsintdt\int \arcsin t \, dt

Full solution

Q. arcsintdt\int \arcsin t \, dt
  1. Recognize the integral: Recognize the integral to be solved.\newlineWe need to find the integral of the arcsin function with respect to tt, which is written as arcsin(t)dt\int \arcsin(t) \, dt.
  2. Use integration by parts: Use integration by parts.\newlineIntegration by parts is given by the formula udv=uvvdu\int u \, dv = uv - \int v \, du, where uu is a function of tt, dvdv is the differential of another function of tt, vv is the integral of dvdv, and dudu is the differential of uu.\newlineFor the integral arcsin(t)dt\int \arcsin(t)\,dt, we can let:\newlineuu00 and uu11.
  3. Differentiate uu and integrate dvdv: Differentiate uu and integrate dvdv. Differentiating uu with respect to tt gives us: du=(1/1t2)dtdu = (1/\sqrt{1-t^2}) dt. Integrating dvdv with respect to tt gives us: v=tv = t.
  4. Apply the integration by parts formula: Apply the integration by parts formula.\newlineNow we apply the integration by parts formula:\newlinearcsin(t)dt=tarcsin(t)t(11t2)dt\int \arcsin(t)\,dt = t \cdot \arcsin(t) - \int t \cdot \left(\frac{1}{\sqrt{1-t^2}}\right) dt.
  5. Evaluate the remaining integral: Evaluate the remaining integral.\newlineThe remaining integral t(11t2)dt\int t \cdot \left(\frac{1}{\sqrt{1-t^2}}\right) dt can be solved by a substitution. Let:\newlinew=1t2w = 1 - t^2, then dw=2tdtdw = -2t dt.\newlineRearranging for dtdt, we get:\newlinedt=dw2tdt = \frac{dw}{-2t}.\newlineSubstituting into the integral, we get:\newline12(1w)dw-\frac{1}{2} \int\left(\frac{1}{\sqrt{w}}\right) dw.
  6. Integrate with respect to ww: Integrate with respect to ww. The integral of 1w\frac{1}{\sqrt{w}} with respect to ww is 2w2\sqrt{w}. So we have: 12×2w=w-\frac{1}{2} \times 2\sqrt{w} = -\sqrt{w}. Substituting back for ww, we get: 1t2-\sqrt{1 - t^2}.
  7. Combine the results: Combine the results.\newlineCombining the results from integration by parts, we have:\newlinearcsin(t)dt=tarcsin(t)(1t2)+C\int \arcsin(t)\,dt = t \cdot \arcsin(t) - (-\sqrt{1 - t^2}) + C, where CC is the constant of integration.\newlineSimplifying, we get:\newlinearcsin(t)dt=tarcsin(t)+1t2+C\int \arcsin(t)\,dt = t \cdot \arcsin(t) + \sqrt{1 - t^2} + C.

More problems from Sin, cos, and tan of special angles