Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int((4*x-4)*(x^(2)-2*x-15)^(8))dx

((4x4)(x22x15)8)dx \int\left((4 \cdot x-4) \cdot\left(x^{2}-2 \cdot x-15\right)^{8}\right) d x

Full solution

Q. ((4x4)(x22x15)8)dx \int\left((4 \cdot x-4) \cdot\left(x^{2}-2 \cdot x-15\right)^{8}\right) d x
  1. Factor Quadratic Expression: Factor the quadratic expression inside the parentheses.\newlineWe need to factor the quadratic expression (x22x15)(x^2 - 2x - 15) to simplify the integration process.\newlineFactoring the quadratic expression, we get:\newlinex22x15=(x5)(x+3)x^2 - 2x - 15 = (x - 5)(x + 3)
  2. Rewrite Integral: Rewrite the integral with the factored form.\newlineNow we can rewrite the integral as:\newline(4x4)((x5)(x+3))8dx\int(4x - 4) \cdot ((x - 5)(x + 3))^8 \, dx
  3. Apply Distributive Property: Apply the distributive property to simplify the integrand.\newlineWe can distribute the constant 44 into the parentheses:\newline(4x4)((x5)(x+3))8dx=(4x(x5)(x+3)84(x5)(x+3)8)dx\int(4x - 4) \cdot ((x - 5)(x + 3))^8 \, dx = \int(4x \cdot (x - 5)(x + 3)^8 - 4 \cdot (x - 5)(x + 3)^8) \, dx
  4. Split Integral: Split the integral into two separate integrals.\newlineWe can split the integral into two parts:\newline(4x(x5)(x+3)8)dx(4(x5)(x+3)8)dx\int(4x * (x - 5)(x + 3)^8) \, dx - \int(4 * (x - 5)(x + 3)^8) \, dx
  5. Apply Power Rule: Apply the power rule for integration to both integrals.\newlineThe power rule for integration states that xndx=x(n+1)n+1+C\int x^n \, dx = \frac{x^{(n+1)}}{n+1} + C, where CC is the constant of integration. However, because we have a product of terms and a composite function, we cannot directly apply the power rule. We need to use substitution or another integration technique.

More problems from Multiplication with rational exponents