Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline1,5,5,4,6,31, 5, 5, 4, 6, 3\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline1,5,5,4,6,31, 5, 5, 4, 6, 3\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Sum of Squared Differences: Now, calculate the sum of the squared differences from the mean for each data point.\newlineΣ(xiμ)2=(14)2+(54)2+(54)2+(44)2+(64)2+(34)2\Sigma(x_i - \mu)^2 = (1 - 4)^2 + (5 - 4)^2 + (5 - 4)^2 + (4 - 4)^2 + (6 - 4)^2 + (3 - 4)^2\newline=(3)2+(1)2+(1)2+(0)2+(2)2+(1)2= (-3)^2 + (1)^2 + (1)^2 + (0)^2 + (2)^2 + (-1)^2\newline=9+1+1+0+4+1= 9 + 1 + 1 + 0 + 4 + 1\newline=16= 16
  2. Find Variance: Now, divide the sum of squared differences by the number of data points to find the variance.\newlineσ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=166\sigma^2 = \frac{16}{6}\newlineσ22.666...\sigma^2 \approx 2.666...
  3. Round to Nearest Tenth: Finally, round the variance to the nearest tenth. σ22.7\sigma^2 \approx 2.7

More problems from Variance and standard deviation