Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\NOP,p=760 inches, 
o=710 inches and 
/_O=124^(@). Find all possible values of 
/_P, to the nearest degree.
Answer:

In NOP,p=760 \triangle \mathrm{NOP}, p=760 inches, o=710 o=710 inches and O=124 \angle \mathrm{O}=124^{\circ} . Find all possible values of P \angle \mathrm{P} , to the nearest degree.\newlineAnswer:

Full solution

Q. In NOP,p=760 \triangle \mathrm{NOP}, p=760 inches, o=710 o=710 inches and O=124 \angle \mathrm{O}=124^{\circ} . Find all possible values of P \angle \mathrm{P} , to the nearest degree.\newlineAnswer:
  1. Use Law of Sines: To find the possible values of angle P, we can use the Law of Sines, which states that the ratio of the length of a side of a triangle to the sine of the opposite angle is the same for all three sides and angles. The formula is given by:\newlineasin(A)=bsin(B)=csin(C) \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \newlinewhere a, b, and c are the lengths of the sides, and A, B, and C are the opposite angles. In this case, we have side o (710710 inches) opposite angle O (124124 degrees), and side p (760760 inches) opposite angle P. We can set up the equation as follows:\newline710sin(124)=760sin(P) \frac{710}{\sin(124^\circ)} = \frac{760}{\sin(P)} \newlineNow we need to solve for sin(P).
  2. Calculate Sine of Angle O: First, we calculate the sine of angle O:\newlinesin(124) \sin(124^\circ) \newlineUsing a calculator, we find that:\newlinesin(124)0.81915204 \sin(124^\circ) \approx 0.81915204 \newlineNow we can substitute this value into our equation:\newline7100.81915204=760sin(P) \frac{710}{0.81915204} = \frac{760}{\sin(P)} \newlineNext, we solve for sin(P).
  3. Substitute Values: We calculate the left side of the equation:\newline7100.81915204866.0254 \frac{710}{0.81915204} \approx 866.0254 \newlineNow we have:\newline866.0254=760sin(P) 866.0254 = \frac{760}{\sin(P)} \newlineTo find sin(P), we rearrange the equation:\newlinesin(P)=760866.0254 \sin(P) = \frac{760}{866.0254} \newlineNow we calculate sin(P).
  4. Solve for Sin(P): We calculate sin(P):\newlinesin(P)760866.02540.87719298 \sin(P) \approx \frac{760}{866.0254} \approx 0.87719298 \newlineSince the sine function can have two different angles that have the same sine value (one acute and one obtuse), we need to find the angle P that corresponds to this sine value. We use the inverse sine function to find the acute angle first.
  5. Find Acute Angle P: Using a calculator, we find the acute angle P:\newlinePsin1(0.87719298) P \approx \sin^{-1}(0.87719298) \newlineP61 P \approx 61^\circ \newlineHowever, since the sum of angles in any triangle must be 180180 degrees, we need to check if there is another possible value for angle P by subtracting the acute angle from 180180 degrees.
  6. Calculate Obtuse Angle: We calculate the possible obtuse angle for P:\newlinePobtuse=180Pacute P_{obtuse} = 180^\circ - P_{acute} \newlinePobtuse=18061 P_{obtuse} = 180^\circ - 61^\circ \newlinePobtuse=119 P_{obtuse} = 119^\circ \newlineHowever, we must remember that the sum of the angles in a triangle must be 180180 degrees. Since we already have two angles (124124 degrees and 6161 degrees), adding a third angle of 119119 degrees would exceed 180180 degrees. Therefore, the obtuse angle is not a possible solution for this triangle.
  7. Check Triangle Sum: We conclude that the only possible value for angle P is the acute angle we found:\newlineP61 P \approx 61^\circ \newlineWe round this to the nearest degree as requested.

More problems from Find trigonometric functions using a calculator