Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\NOP,n=300cm,p=100cm and 
/_P=45^(@). Find all possible values of 
/_N, to the nearest degree.
Answer:

In NOP,n=300 cm,p=100 cm \triangle \mathrm{NOP}, n=300 \mathrm{~cm}, p=100 \mathrm{~cm} and P=45 \angle \mathrm{P}=45^{\circ} . Find all possible values of N \angle \mathrm{N} , to the nearest degree.\newlineAnswer:

Full solution

Q. In NOP,n=300 cm,p=100 cm \triangle \mathrm{NOP}, n=300 \mathrm{~cm}, p=100 \mathrm{~cm} and P=45 \angle \mathrm{P}=45^{\circ} . Find all possible values of N \angle \mathrm{N} , to the nearest degree.\newlineAnswer:
  1. Apply Law of Sines: To find the possible values of angle NN, we can use the Law of Sines, which states that the ratio of the length of a side of a triangle to the sine of the angle opposite that side is the same for all sides of the triangle. The formula is asin(A)=bsin(B)=csin(C)\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}, where aa, bb, and cc are the lengths of the sides, and AA, BB, and CC are the opposite angles.
  2. Write Law of Sines: First, let's write down the Law of Sines for our triangle NOP: 300sin(N)=100sin(45°)\frac{300}{\sin(N)} = \frac{100}{\sin(45°)}
  3. Solve for sin(N)\sin(N): Now, we can solve for sin(N)\sin(N):sin(N)=300×sin(45°)100\sin(N) = \frac{300 \times \sin(45°)}{100}
  4. Calculate sin(45°)\sin(45°): Calculate sin(45°)\sin(45°), which is 2/2\sqrt{2}/2 or approximately 0.70710.7071:\newlinesin(N)=300×0.7071100\sin(N) = \frac{300 \times 0.7071}{100}
  5. Perform Multiplication and Division: Perform the multiplication and division to find sin(N)\sin(N):sin(N)300×0.7071/100\sin(N) \approx 300 \times 0.7071 / 100sin(N)212.13/100\sin(N) \approx 212.13 / 100sin(N)2.1213\sin(N) \approx 2.1213

More problems from Find trigonometric functions using a calculator