Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\LMN, bar(LN) is extended through point 
N to point 
O,m/_LMN=(x+12)^(@), 
m/_MNO=(5x+10)^(@), and 
m/_NLM=(2x+12)^(@). Find 
m/_MNO.
Answer:

In LMN,LN \triangle \mathrm{LMN}, \overline{L N} is extended through point N \mathrm{N} to point O,mLMN=(x+12) \mathrm{O}, \mathrm{m} \angle L M N=(x+12)^{\circ} , mMNO=(5x+10) \mathrm{m} \angle M N O=(5 x+10)^{\circ} , and mNLM=(2x+12) \mathrm{m} \angle N L M=(2 x+12)^{\circ} . Find mMNO \mathrm{m} \angle M N O .\newlineAnswer:

Full solution

Q. In LMN,LN \triangle \mathrm{LMN}, \overline{L N} is extended through point N \mathrm{N} to point O,mLMN=(x+12) \mathrm{O}, \mathrm{m} \angle L M N=(x+12)^{\circ} , mMNO=(5x+10) \mathrm{m} \angle M N O=(5 x+10)^{\circ} , and mNLM=(2x+12) \mathrm{m} \angle N L M=(2 x+12)^{\circ} . Find mMNO \mathrm{m} \angle M N O .\newlineAnswer:
  1. Identify Exterior Angle Theorem: To find the measure of angle MNOMNO, we need to use the fact that the exterior angle of a triangle is equal to the sum of the two non-adjacent interior angles.\newlineSo, mMNO=mLMN+mNLMm\angle MNO = m\angle LMN + m\angle NLM.
  2. Substitute Given Expressions: Substitute the given expressions for m/LMNm/_{\text{LMN}} and m/NLMm/_{\text{NLM}} into the equation.m/MNO=(x+12)+(2x+12)m/_{\text{MNO}} = (x + 12) + (2x + 12).
  3. Combine Like Terms: Combine like terms to simplify the equation. m_MNO=x+12+2x+12=3x+24\frac{m}{\_MNO} = x + 12 + 2x + 12 = 3x + 24.
  4. Set Up Equation: Now we have an expression for m/MNOm/_{\text{MNO}} in terms of xx, but we also have the measure of angle MNO given as (5x+10)(5x + 10). Since both expressions represent the same angle, we can set them equal to each other.3x+24=5x+10.3x + 24 = 5x + 10.
  5. Solve for x: Solve for x by subtracting 3x3x from both sides of the equation.\newline3x+243x=5x+103x3x + 24 - 3x = 5x + 10 - 3x\newline24=2x+10.24 = 2x + 10.
  6. Isolate x Term: Subtract 1010 from both sides to isolate the term with xx.\newline2410=2x+101024 - 10 = 2x + 10 - 10\newline14=2x14 = 2x.
  7. Find Value of x: Divide both sides by 22 to solve for x.\newline142=2x2\frac{14}{2} = \frac{2x}{2}\newline7=x7 = x.
  8. Calculate Angle MNO: Now that we have the value of xx, we can find the measure of angle MNO by substituting xx back into the expression for m/MNOm/_{\text{MNO}}. \newlinem/MNO=5x+10m/_{\text{MNO}} = 5x + 10\newlinem/MNO=5(7)+10m/_{\text{MNO}} = 5(7) + 10\newlinem/MNO=35+10m/_{\text{MNO}} = 35 + 10\newlinem/MNO=45.m/_{\text{MNO}} = 45.

More problems from Transformations of quadratic functions