Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\HIJ,j=8.6cm,i=4.6cm and 
/_I=158^(@). Find all possible values of 
/_J, to the nearest 10th of a degree.
Answer:

In HIJ,j=8.6 cm,i=4.6 cm \triangle \mathrm{HIJ}, j=8.6 \mathrm{~cm}, i=4.6 \mathrm{~cm} and I=158 \angle \mathrm{I}=158^{\circ} . Find all possible values of J \angle \mathrm{J} , to the nearest 1010th of a degree.\newlineAnswer:

Full solution

Q. In HIJ,j=8.6 cm,i=4.6 cm \triangle \mathrm{HIJ}, j=8.6 \mathrm{~cm}, i=4.6 \mathrm{~cm} and I=158 \angle \mathrm{I}=158^{\circ} . Find all possible values of J \angle \mathrm{J} , to the nearest 1010th of a degree.\newlineAnswer:
  1. Use Law of Sines: Use the Law of Sines to find the possible values of angle J.\newlineThe Law of Sines states that in any triangle, the ratio of the length of a side to the sine of its opposite angle is constant. That is, for triangle HIJ:\newlinesin(I)i=sin(J)j\frac{\sin(I)}{i} = \frac{\sin(J)}{j}\newlineWe can rearrange this to solve for sin(J)\sin(J):\newlinesin(J)=sin(I)ji\sin(J) = \frac{\sin(I) \cdot j}{i}\newlineFirst, we need to calculate sin(I)\sin(I). Since I=158I = 158 degrees:\newlinesin(I)=sin(158)\sin(I) = \sin(158^\circ)
  2. Calculate sin(I)\sin(I): Calculate sin(I)\sin(I) using a calculator.sin(158°)0.309\sin(158°) \approx 0.309
  3. Substitute values for sin(J): Substitute the values of sin(I)sin(I), jj, and ii into the equation to find sin(J)sin(J).sin(J)=0.309×8.6cm4.6cm\sin(J) = \frac{0.309 \times 8.6\,\text{cm}}{4.6\,\text{cm}}
  4. Perform sin(J)\sin(J) calculation: Perform the calculation to find sin(J)\sin(J).\newlinesin(J)(0.309×8.6)/4.6\sin(J) \approx (0.309 \times 8.6) / 4.6\newlinesin(J)2.6574/4.6\sin(J) \approx 2.6574 / 4.6\newlinesin(J)0.5777\sin(J) \approx 0.5777
  5. Find possible values of JJ: Find the possible values of angle JJ by taking the inverse sine (arcsin) of extsin(J) ext{sin}(J).\newlineSince the sine function is positive in the first and second quadrants, there could be two possible angles for JJ, one acute and one obtuse. However, since we are dealing with a triangle, the sum of angles II and JJ must be less than 180180 degrees. Given that angle II is already 158158 degrees, angle JJ must be acute.\newlineJJ00
  6. Calculate angle J: Calculate the value of angle J using a calculator.\newlineJarcsin(0.5777)J \approx \arcsin(0.5777)\newlineJ35.3J \approx 35.3 degrees (to the nearest tenth)

More problems from Find trigonometric functions using a calculator