Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
DeltaUVW,w=5.3cm,v=4.8cm and 
/_V=151^(@). Find all possible values of 
/_W, to the nearest 1oth of a degree.
Answer:

In ΔUVW,w=5.3 cm,v=4.8 cm \Delta \mathrm{UVW}, w=5.3 \mathrm{~cm}, v=4.8 \mathrm{~cm} and V=151 \angle \mathrm{V}=151^{\circ} . Find all possible values of W \angle \mathrm{W} , to the nearest 1010th of a degree.\newlineAnswer:

Full solution

Q. In ΔUVW,w=5.3 cm,v=4.8 cm \Delta \mathrm{UVW}, w=5.3 \mathrm{~cm}, v=4.8 \mathrm{~cm} and V=151 \angle \mathrm{V}=151^{\circ} . Find all possible values of W \angle \mathrm{W} , to the nearest 1010th of a degree.\newlineAnswer:
  1. Use Law of Sines: Use the Law of Sines to find the ratio of the sides to the sines of their opposite angles.\newlinewsinW=vsinV \frac{w}{\sin W} = \frac{v}{\sin V} \newlineSubstitute the given values into the equation.\newline5.3sinW=4.8sin151 \frac{5.3}{\sin W} = \frac{4.8}{\sin 151^\circ}
  2. Calculate sine of V: Calculate the sine of angle V.\newlinesin1510.5150 \sin 151^\circ \approx 0.5150
  3. Substitute and solve: Substitute the value of sin V into the equation and solve for sin W.\newline5.3sinW=4.80.5150 \frac{5.3}{\sin W} = \frac{4.8}{0.5150} \newlinesinW=5.3×0.51504.8 \sin W = \frac{5.3 \times 0.5150}{4.8} \newlinesinW2.72954.8 \sin W \approx \frac{2.7295}{4.8} \newlinesinW0.5686 \sin W \approx 0.5686
  4. Find possible values of W: Find the possible values of angle W using the inverse sine function.\newlineWsin1(0.5686) W \approx \sin^{-1}(0.5686) \newlineSince the sine function has a range of [1-1, 11] and is positive in the first and second quadrants, there are two possible angles for W: one acute and one obtuse.\newlineW1sin1(0.5686) W_1 \approx \sin^{-1}(0.5686) \newlineW2180W1 W_2 \approx 180^\circ - W_1
  5. Calculate first W: Calculate the first possible value of angle W.\newlineW1sin1(0.5686) W_1 \approx \sin^{-1}(0.5686) \newlineW134.7 W_1 \approx 34.7^\circ
  6. Calculate second W: Calculate the second possible value of angle W.\newlineW218034.7 W_2 \approx 180^\circ - 34.7^\circ \newlineW2145.3 W_2 \approx 145.3^\circ
  7. Check triangle angles: Check if the sum of angles in the triangle exceeds 180180 degrees when using the second possible value of angle W.\newline 151^\circ + 145.3^\circ > 180^\circ \newlineThis is not possible in a triangle, so the only valid solution for angle W is the acute angle.

More problems from Evaluate variable expressions for number sequences