Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
DeltaSTU,t=77 inches, 
s=22 inches and 
/_S=161^(@). Find all possible values of 
/_T, to the nearest degree.
Answer:

In ΔSTU,t=77 \Delta \mathrm{STU}, t=77 inches, s=22 s=22 inches and S=161 \angle \mathrm{S}=161^{\circ} . Find all possible values of T \angle \mathrm{T} , to the nearest degree.\newlineAnswer:

Full solution

Q. In ΔSTU,t=77 \Delta \mathrm{STU}, t=77 inches, s=22 s=22 inches and S=161 \angle \mathrm{S}=161^{\circ} . Find all possible values of T \angle \mathrm{T} , to the nearest degree.\newlineAnswer:
  1. Apply Law of Sines: To find the possible values of angle TT, we can use the Law of Sines, which relates the sides of a triangle to the sines of its opposite angles. The Law of Sines states that for any triangle ABCABC with sides aa, bb, and cc opposite angles AA, BB, and CC respectively, the following ratio holds true: sinAa=sinBb=sinCc\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}. We will apply this to triangle STUSTU.
  2. Find sine of angle S: First, we need to find the sine of angle S. Since angle S is given as 161161 degrees, we can calculate its sine using a calculator.\newlinesin(161)0.46947156\sin(161^\circ) \approx 0.46947156
  3. Set up ratio for sides: Now, we can set up the ratio using the Law of Sines for sides ss and tt and their opposite angles SS and TT respectively.sinSs=sinTt\frac{\sin S}{s} = \frac{\sin T}{t}Substituting the known values, we get:sin161°22=sinT77\frac{\sin 161°}{22} = \frac{\sin T}{77}
  4. Solve for sinT\sin T: Next, we solve for sinT\sin T by cross-multiplying.sinT=(sin161°)(7722)\sin T = (\sin 161°) \cdot (\frac{77}{22})sinT0.46947156(7722)\sin T \approx 0.46947156 \cdot (\frac{77}{22})sinT1.651\sin T \approx 1.651

More problems from Find trigonometric functions using a calculator