Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
DeltaMNO,o=870 inches, 
n=550 inches and 
/_N=18^(@). Find all possible values of 
/_O, to the nearest degree.
Answer:

In ΔMNO,o=870 \Delta \mathrm{MNO}, o=870 inches, n=550 n=550 inches and N=18 \angle \mathrm{N}=18^{\circ} . Find all possible values of O \angle \mathrm{O} , to the nearest degree.\newlineAnswer:

Full solution

Q. In ΔMNO,o=870 \Delta \mathrm{MNO}, o=870 inches, n=550 n=550 inches and N=18 \angle \mathrm{N}=18^{\circ} . Find all possible values of O \angle \mathrm{O} , to the nearest degree.\newlineAnswer:
  1. Law of Sines Formula: To find the possible values of angle OO, we can use the Law of Sines, which states that the ratio of the length of a side of a triangle to the sine of the opposite angle is constant for all three sides and angles in the triangle. The formula is given by:\newlineasin(A)=bsin(B)=csin(C)\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}\newlinewhere aa, bb, and cc are the lengths of the sides, and AA, BB, and CC are the opposite angles. In this case, we have side oo (opposite angle OO), side nn (opposite angle aa00), and angle aa00. We can set up the ratio for sides oo and nn:\newlineosin(O)=nsin(N)\frac{o}{\sin(O)} = \frac{n}{\sin(N)}\newlinePlugging in the given values:\newline870sin(O)=550sin(18°)\frac{870}{\sin(O)} = \frac{550}{\sin(18°)}\newlineNow we need to solve for aa44.
  2. Calculate Sine of Angle N: First, calculate the sine of angle NN, which is 1818 degrees. We can use a calculator for this:\newlinesin(18)0.30901699...\sin(18^\circ) \approx 0.30901699...\newlineNow we have:\newline870sin(O)5500.30901699...\frac{870}{\sin(O)} \approx \frac{550}{0.30901699...}\newlineNext, we will cross-multiply to solve for sin(O)\sin(O).
  3. Cross-Multiply to Solve: Cross-multiplying gives us:\newlinesin(O)(870×0.30901699...)/550\sin(O) \approx (870 \times 0.30901699...) / 550\newlineNow we calculate the right side of the equation.
  4. Calculate Sin(O): Performing the calculation:\newlinesin(O)(870×0.30901699)/550\sin(O) \approx (870 \times 0.30901699) / 550\newlinesin(O)268.884763/550\sin(O) \approx 268.884763 / 550\newlinesin(O)0.4890632...\sin(O) \approx 0.4890632...\newlineNow we have the approximate value of sin(O)\sin(O).
  5. Find Angle O: To find angle O, we take the inverse sine (arcsin) of the value we found for sin(O)\sin(O):\newlineOarcsin(0.4890632...)O \approx \arcsin(0.4890632...)\newlineUsing a calculator, we find:\newlineO29.21O \approx 29.21^\circ\newlineSince we are looking for the value to the nearest degree, we round this to:\newlineO29O \approx 29^\circ\newlineHowever, we must consider that there could be another possible value for angle O because the sine function is positive in both the first and second quadrants. To find the second possible value, we subtract our first value from 180180^\circ:\newline18029=151180^\circ - 29^\circ = 151^\circ\newlineSo the two possible values for angle O are approximately 2929^\circ and 151151^\circ.

More problems from Find trigonometric functions using a calculator