Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
DeltaJKL, bar(JL) is extended through point 
L to point 
M,m/_JKL=(3x+3)^(@), 
m/_LJK=(3x+17)^(@), and 
m/_KLM=(8x-16)^(@). Find 
m/_KLM.
Answer:

In ΔJKL,JL \Delta \mathrm{JKL}, \overline{J L} is extended through point L \mathrm{L} to point M,mJKL=(3x+3) \mathrm{M}, \mathrm{m} \angle J K L=(3 x+3)^{\circ} , mLJK=(3x+17) \mathrm{m} \angle L J K=(3 x+17)^{\circ} , and mKLM=(8x16) \mathrm{m} \angle K L M=(8 x-16)^{\circ} . Find mKLM \mathrm{m} \angle K L M .\newlineAnswer:

Full solution

Q. In ΔJKL,JL \Delta \mathrm{JKL}, \overline{J L} is extended through point L \mathrm{L} to point M,mJKL=(3x+3) \mathrm{M}, \mathrm{m} \angle J K L=(3 x+3)^{\circ} , mLJK=(3x+17) \mathrm{m} \angle L J K=(3 x+17)^{\circ} , and mKLM=(8x16) \mathrm{m} \angle K L M=(8 x-16)^{\circ} . Find mKLM \mathrm{m} \angle K L M .\newlineAnswer:
  1. Understand angles relationship: Understand the relationship between the angles in the problem.\newlineIn any triangle, the sum of the interior angles is always 180180 degrees. Additionally, the exterior angle of a triangle is equal to the sum of the two non-adjacent interior angles.
  2. Set up exterior angle equation: Set up the equation based on the exterior angle theorem.\newlineSince angle KLM is an exterior angle to triangle JKL, we have:\newlinem/KLM=m/JKL+m/LJKm/_{\text{KLM}} = m/_{\text{JKL}} + m/_{\text{LJK}}\newlineSubstitute the given expressions:\newline(8x16)=(3x+3)+(3x+17)(8x - 16) = (3x + 3) + (3x + 17)
  3. Simplify and solve for xx: Simplify and solve for xx.\newlineCombine like terms:\newline8x16=6x+208x - 16 = 6x + 20\newlineSubtract 6x6x from both sides:\newline2x16=202x - 16 = 20\newlineAdd 1616 to both sides:\newline2x=362x = 36\newlineDivide by 22:\newlinex=18x = 18
  4. Find angle KLM measure: Find the measure of angle KLM.\newlineNow that we have the value of xx, we can substitute it back into the expression for m/_KLMm/\_KLM:\newlinem/_KLM=8x16m/\_KLM = 8x - 16\newlinem/_KLM=8(18)16m/\_KLM = 8(18) - 16\newlinem/_KLM=14416m/\_KLM = 144 - 16\newlinem/_KLM=128m/\_KLM = 128 degrees

More problems from Transformations of quadratic functions