Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
DeltaGHI, bar(GI) is extended through point I to point J, 
m/_IGH=(x-2)^(@), 
m/_HIJ=(4x-18)^(@), and 
m/_GHI=(x+14)^(@). Find 
m/_HIJ.
Answer:

In ΔGHI,GI \Delta \mathrm{GHI}, \overline{G I} is extended through point I to point J, mIGH=(x2) \mathrm{m} \angle I G H=(x-2)^{\circ} , mHIJ=(4x18) \mathrm{m} \angle H I J=(4 x-18)^{\circ} , and mGHI=(x+14) \mathrm{m} \angle G H I=(x+14)^{\circ} . Find mHIJ \mathrm{m} \angle H I J .\newlineAnswer:

Full solution

Q. In ΔGHI,GI \Delta \mathrm{GHI}, \overline{G I} is extended through point I to point J, mIGH=(x2) \mathrm{m} \angle I G H=(x-2)^{\circ} , mHIJ=(4x18) \mathrm{m} \angle H I J=(4 x-18)^{\circ} , and mGHI=(x+14) \mathrm{m} \angle G H I=(x+14)^{\circ} . Find mHIJ \mathrm{m} \angle H I J .\newlineAnswer:
  1. Identify Relationship: Identify the relationship between the angles.\newlineSince GIGI is extended through II to JJ, angle IGHIGH and angle HIJHIJ form a linear pair and their measures add up to 180180 degrees.
  2. Set Up Equation: Set up the equation using the angle addition postulate.\newlinem/_IGH+m/_HIJ=180m/\_IGH + m/\_HIJ = 180^\circ\newlineSubstitute the given expressions for m/_IGHm/\_IGH and m/_HIJm/\_HIJ.\newline(x2)+(4x18)=180(x - 2)^\circ + (4x - 18)^\circ = 180^\circ
  3. Combine and Solve: Combine like terms and solve for xx.x2+4x18=180x - 2 + 4x - 18 = 1805x20=1805x - 20 = 1805x=2005x = 200x=40x = 40
  4. Substitute Value: Substitute the value of xx back into the expression for m/_HIJm/\_HIJ.
    m/_HIJ=(4x18)@m/\_HIJ = (4x - 18)^{@}
    m/_HIJ=(4(40)18)@m/\_HIJ = (4(40) - 18)^{@}
    m/_HIJ=(16018)@m/\_HIJ = (160 - 18)^{@}
    m/_HIJ=142@m/\_HIJ = 142^{@}

More problems from Transformations of quadratic functions