Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
y-x^(3)+2y^(2)=5 then find 
(dy)/(dx) at the point 
(1,-2).
Answer: 
(dy)/(dx)|_((1,-2))=

If yx3+2y2=5 y-x^{3}+2 y^{2}=5 then find dydx \frac{d y}{d x} at the point (1,2) (1,-2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,-2)}=

Full solution

Q. If yx3+2y2=5 y-x^{3}+2 y^{2}=5 then find dydx \frac{d y}{d x} at the point (1,2) (1,-2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,-2)}=
  1. Differentiate Equation: Differentiate both sides of the equation with respect to xx. We have yx3+2y2=5y - x^3 + 2y^2 = 5. To find dydx\frac{dy}{dx}, we need to differentiate each term with respect to xx. Remember that yy is a function of xx, so we will use the chain rule for the terms involving yy. Differentiating yy with respect to xx gives dydx\frac{dy}{dx}. Differentiating yx3+2y2=5y - x^3 + 2y^2 = 500 with respect to xx gives yx3+2y2=5y - x^3 + 2y^2 = 522. Differentiating yx3+2y2=5y - x^3 + 2y^2 = 533 with respect to xx gives yx3+2y2=5y - x^3 + 2y^2 = 555 using the chain rule. The constant yx3+2y2=5y - x^3 + 2y^2 = 566 differentiates to yx3+2y2=5y - x^3 + 2y^2 = 577. So, the differentiated equation is: yx3+2y2=5y - x^3 + 2y^2 = 588
  2. Solve for dydx\frac{dy}{dx}: Solve for dydx\frac{dy}{dx}. We have dydx3x2+4ydydx=0\frac{dy}{dx} - 3x^2 + 4y\frac{dy}{dx} = 0. Rearrange the terms to isolate dydx\frac{dy}{dx}: dydx+4ydydx=3x2\frac{dy}{dx} + 4y\frac{dy}{dx} = 3x^2 Factor out dydx\frac{dy}{dx}: dydx(1+4y)=3x2\frac{dy}{dx}(1 + 4y) = 3x^2 Divide both sides by (1+4y)(1 + 4y) to solve for dydx\frac{dy}{dx}: dydx=3x2(1+4y)\frac{dy}{dx} = \frac{3x^2}{(1 + 4y)}
  3. Substitute Point: Substitute the point (1,2)(1, -2) into the derivative to find the slope at that point.\newlineWe have dydx=3x21+4y\frac{dy}{dx} = \frac{3x^2}{1 + 4y}.\newlineSubstitute x=1x = 1 and y=2y = -2:\newlinedydx(1,2)=3(1)21+4(2)\frac{dy}{dx}\bigg|_{(1,-2)} = \frac{3(1)^2}{1 + 4(-2)}\newlineCalculate the denominator:\newline1+4(2)=18=71 + 4(-2) = 1 - 8 = -7\newlineCalculate the numerator:\newline3(1)2=33(1)^2 = 3\newlineNow, divide the numerator by the denominator:\newlinedydx(1,2)=37\frac{dy}{dx}\bigg|_{(1,-2)} = \frac{3}{-7}

More problems from Transformations of quadratic functions