Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
y^(3)-x^(2)=-1 then find 
(dy)/(dx) at the point 
(3,2).
Answer: 
(dy)/(dx)|_((3,2))=

If y3x2=1 y^{3}-x^{2}=-1 then find dydx \frac{d y}{d x} at the point (3,2) (3,2) .\newlineAnswer: dydx(3,2)= \left.\frac{d y}{d x}\right|_{(3,2)}=

Full solution

Q. If y3x2=1 y^{3}-x^{2}=-1 then find dydx \frac{d y}{d x} at the point (3,2) (3,2) .\newlineAnswer: dydx(3,2)= \left.\frac{d y}{d x}\right|_{(3,2)}=
  1. Differentiate with respect to xx: Differentiate both sides of the equation with respect to xx. We have y3x2=1y^3 - x^2 = -1. To find dydx\frac{dy}{dx}, we need to differentiate both sides of the equation with respect to xx, using the chain rule for the y3y^3 term since yy is a function of xx. ddx(y3)ddx(x2)=ddx(1)\frac{d}{dx}(y^3) - \frac{d}{dx}(x^2) = \frac{d}{dx}(-1) 3y2(dydx)2x=03y^2(\frac{dy}{dx}) - 2x = 0
  2. Solve for dydx\frac{dy}{dx}: Solve for dydx\frac{dy}{dx}. Now we isolate dydx\frac{dy}{dx} on one side of the equation. 3y2(dydx)=2x3y^2\left(\frac{dy}{dx}\right) = 2x dydx=2x3y2\frac{dy}{dx} = \frac{2x}{3y^2}
  3. Substitute point into derivative: Substitute the point (3,2)(3,2) into the derivative to find the slope at that point.\newlineWe substitute x=3x = 3 and y=2y = 2 into the equation from Step 22.\newline(dydx)(3,2)=2(3)(3(2)2)(\frac{dy}{dx})|_{(3,2)} = \frac{2(3)}{(3(2)^2)}\newline(dydx)(3,2)=6(34)(\frac{dy}{dx})|_{(3,2)} = \frac{6}{(3\cdot4)}\newline(dydx)(3,2)=612(\frac{dy}{dx})|_{(3,2)} = \frac{6}{12}\newline(dydx)(3,2)=12(\frac{dy}{dx})|_{(3,2)} = \frac{1}{2}

More problems from Transformations of quadratic functions