Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-y^(3)+4x^(2)-5xy=1 then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If y3+4x25xy=1 -y^{3}+4 x^{2}-5 x y=1 then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If y3+4x25xy=1 -y^{3}+4 x^{2}-5 x y=1 then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate Terms: To find the derivative (dydx)(\frac{dy}{dx}), we need to differentiate both sides of the equation with respect to xx, treating yy as a function of xx (implicit differentiation).
  2. Combine Derivatives: Differentiate each term on the left side of the equation with respect to xx. The derivative of y3-y^3 with respect to xx is 3y2(dydx)-3y^2(\frac{dy}{dx}) because yy is a function of xx. The derivative of 4x24x^2 with respect to xx is 8x8x. The derivative of 5xy-5xy with respect to xx is y3-y^311 because we apply the product rule: the derivative of the first function (xx) times the second function (yy) plus the first function (xx) times the derivative of the second function (yy).
  3. Group Terms: Combine the derivatives to rewrite the equation.\newline3y2dydx+8x5y5xdydx=0-3y^2\frac{dy}{dx} + 8x - 5y - 5x\frac{dy}{dx} = 0
  4. Factor Out: Group the terms with dydx\frac{dy}{dx} on one side and the rest on the other side.3y2dydx5xdydx=5y8x-3y^2\frac{dy}{dx} - 5x\frac{dy}{dx} = 5y - 8x
  5. Solve for dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} from the left side of the equation.\newlinedydx(3y25x)=5y8x\frac{dy}{dx}(-3y^2 - 5x) = 5y - 8x
  6. Solve for (dydx):</b>Factorout$(dydx)(\frac{dy}{dx}):</b> Factor out \$(\frac{dy}{dx}) from the left side of the equation.\newline(dydx)(3y25x)=5y8x(\frac{dy}{dx})(-3y^2 - 5x) = 5y - 8x Solve for (dydx)(\frac{dy}{dx}) by dividing both sides of the equation by (3y25x)(-3y^2 - 5x).\newline(dydx)=5y8x3y25x(\frac{dy}{dx}) = \frac{5y - 8x}{-3y^2 - 5x}

More problems from Transformations of quadratic functions