Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-y^(3)+2y-x^(3)-3=0 then find 
(dy)/(dx) at the point 
(1,-2).
Answer: 
(dy)/(dx)|_((1,-2))=

If y3+2yx33=0 -y^{3}+2 y-x^{3}-3=0 then find dydx \frac{d y}{d x} at the point (1,2) (1,-2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,-2)}=

Full solution

Q. If y3+2yx33=0 -y^{3}+2 y-x^{3}-3=0 then find dydx \frac{d y}{d x} at the point (1,2) (1,-2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,-2)}=
  1. Implicit Differentiation: To find the derivative of yy with respect to xx, dydx\frac{dy}{dx}, we need to implicitly differentiate the given equation with respect to xx.
  2. Solving for (dydx):</b>Differentiatebothsidesoftheequationwithrespectto$x(\frac{dy}{dx}):</b> Differentiate both sides of the equation with respect to \$x. Remember that when differentiating yy terms with respect to xx, we treat yy as a function of xx and use the chain rule to include (dydx)(\frac{dy}{dx}).\newlineDifferentiating y3-y^3 with respect to xx gives us 3y2(dydx)-3y^2(\frac{dy}{dx}).\newlineDifferentiating 2y2y with respect to xx gives us yy11.\newlineDifferentiating yy22 with respect to xx gives us yy44.\newlineDifferentiating yy55 with respect to xx gives us yy77, since it's a constant.\newlineSo, the differentiated equation is yy88.
  3. Substitution and Calculation: Now, we solve for (dy)/(dx)(dy)/(dx) by isolating it on one side of the equation.\newlineGroup the terms containing (dy)/(dx)(dy)/(dx) together: (3y2+2)(dy)/(dx)3x2=0(-3y^2 + 2)(dy)/(dx) - 3x^2 = 0.\newlineAdd 3x23x^2 to both sides: (3y2+2)(dy)/(dx)=3x2(-3y^2 + 2)(dy)/(dx) = 3x^2.\newlineDivide both sides by (3y2+2)(-3y^2 + 2) to get (dy)/(dx)=3x2/(3y2+2)(dy)/(dx) = 3x^2 / (-3y^2 + 2).
  4. Substitution and Calculation: Now, we solve for dydx\frac{dy}{dx} by isolating it on one side of the equation.\newlineGroup the terms containing dydx\frac{dy}{dx} together: (3y2+2)dydx3x2=0(-3y^2 + 2)\frac{dy}{dx} - 3x^2 = 0.\newlineAdd 3x23x^2 to both sides: (3y2+2)dydx=3x2(-3y^2 + 2)\frac{dy}{dx} = 3x^2.\newlineDivide both sides by (3y2+2)(-3y^2 + 2) to get dydx=3x23y2+2\frac{dy}{dx} = \frac{3x^2}{-3y^2 + 2}.Substitute the given point (1,2)(1, -2) into the equation to find the value of dydx\frac{dy}{dx} at that point.\newlinedydx=3(1)23(2)2+2\frac{dy}{dx} = \frac{3(1)^2}{-3(-2)^2 + 2}.\newlinedydx\frac{dy}{dx}00.\newlinedydx\frac{dy}{dx}11.\newlinedydx\frac{dy}{dx}22.\newlinedydx\frac{dy}{dx}33.

More problems from Transformations of quadratic functions