Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
xy^(2)=-y^(3)-x^(3) then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If xy2=y3x3 x y^{2}=-y^{3}-x^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If xy2=y3x3 x y^{2}=-y^{3}-x^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate with respect to xx: Differentiate both sides of the equation with respect to xx. The equation is xy2=y3x3xy^2 = -y^3 - x^3. We will use the product rule for the left side and the chain rule for the right side. Using the product rule: d(uv)dx=udvdx+vdudx\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}, where u=xu = x and v=y2v = y^2. Using the chain rule: d(un)dx=nu(n1)dudx\frac{d(u^n)}{dx} = n\cdot u^{(n-1)}\cdot\frac{du}{dx}, where u=yu = y or xx and n=3n = 3.
  2. Apply product rule: Apply the product rule to the left side of the equation.\newlineDifferentiating xy2xy^2 with respect to xx gives us:\newlined(xy2)dx=x(d(y2)dx)+y2(d(x)dx)\frac{d(xy^2)}{dx} = x\left(\frac{d(y^2)}{dx}\right) + y^2\left(\frac{d(x)}{dx}\right)\newlineSince d(x)dx=1\frac{d(x)}{dx} = 1, we have:\newlined(xy2)dx=x(2ydydx)+y2\frac{d(xy^2)}{dx} = x(2y\frac{dy}{dx}) + y^2
  3. Apply chain rule: Apply the chain rule to the right side of the equation.\newlineDifferentiating y3-y^3 with respect to xx gives us:\newlined(y3)dx=3y2dydx\frac{d(-y^3)}{dx} = -3y^2\frac{dy}{dx}\newlineDifferentiating x3-x^3 with respect to xx gives us:\newlined(x3)dx=3x2\frac{d(-x^3)}{dx} = -3x^2
  4. Combine derivatives: Combine the derivatives from both sides of the equation.\newlineWe have:\newlinex(2ydydx)+y2=3y2dydx3x2x(2y\frac{dy}{dx}) + y^2 = -3y^2\frac{dy}{dx} - 3x^2
  5. Isolate terms: Isolate terms involving dydx\frac{dy}{dx} on one side of the equation.\newlineMove all terms involving dydx\frac{dy}{dx} to the left side and the rest to the right side:\newlinex(2ydydx)+3y2dydx=y23x2x(2y\frac{dy}{dx}) + 3y^2\frac{dy}{dx} = -y^2 - 3x^2
  6. Factor out dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} from the left side of the equation.\newlinedydx(2xy+3y2)=y23x2\frac{dy}{dx}(2xy + 3y^2) = -y^2 - 3x^2
  7. Solve for (\frac{dy}{dx}): Solve for \((\frac{dy}{dx}).\(\newlineDivide both sides by (\(2xy + 33y^22) to isolate (\frac{dy}{dx}):\(\newline\((\frac{dy}{dx}) = \frac{-y^\(2\) - \(3\)x^\(2\)}{\(2\)xy + \(3\)y^\(2\)}

More problems from Transformations of quadratic functions