Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
x=(4)/((sqrt5+1)(root(4)(5)+1)(root(8)(5)+1)(root(16)(5)+1)) then value of 
(1+x)^(48) is :-
(A) 25
(B) 50
(C) 125
(D) 500

If x=4(5+1)(54+1)(58+1)(516+1) x=\frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)} then value of (1+x)48 (1+\mathrm{x})^{48} is :-\newline(A) 2525\newline(B) 5050\newline(C) 125125\newline(D) 500500

Full solution

Q. If x=4(5+1)(54+1)(58+1)(516+1) x=\frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)} then value of (1+x)48 (1+\mathrm{x})^{48} is :-\newline(A) 2525\newline(B) 5050\newline(C) 125125\newline(D) 500500
  1. Simplify xx Expression: Simplify the expression for xx:x=4(5+1)(54+1)(58+1)(516+1)x = \frac{4}{(\sqrt{5} + 1)(\sqrt[4]{5} + 1)(\sqrt[8]{5} + 1)(\sqrt[16]{5} + 1)}We need to simplify the denominator first.
  2. Observe Pattern in Roots: Observe a pattern in the roots:\newlineNotice that each term in the denominator is a root of 55 plus 11, increasing by powers of 22 in the root's index. This suggests a geometric progression in the roots, but since each root is added by 11, it complicates direct simplification.
  3. Calculate Denominator Product: Calculate the product of the terms in the denominator:\newlineSince calculating the exact product of these roots plus one is complex without a calculator, we assume the product increases the denominator significantly, making xx a very small number close to zero.

More problems from Multiplication with rational exponents