Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If x=31x=3-\sqrt{-1}, what is the value of (x2+2x2)(x^2+2x-2)?\newline(A) 3(1/2)-3^{(1/2)}\newline(B) 00\newline(C) 3(1/2)3^{(1/2)}\newline(D) 33

Full solution

Q. If x=31x=3-\sqrt{-1}, what is the value of (x2+2x2)(x^2+2x-2)?\newline(A) 3(1/2)-3^{(1/2)}\newline(B) 00\newline(C) 3(1/2)3^{(1/2)}\newline(D) 33
  1. Substitute x value: Substitute the value of xx into the expression.\newlinex=31x = 3 - \sqrt{-1}, so we substitute this into the expression x2+2x2x^2 + 2x - 2.\newline(31)2+2(31)2(3 - \sqrt{-1})^2 + 2(3 - \sqrt{-1}) - 2
  2. Simplify by squaring: Simplify the expression by squaring xx.(31)2=322(3)(1)+(1)2=9611=861(3 - \sqrt{-1})^2 = 3^2 - 2(3)(\sqrt{-1}) + (\sqrt{-1})^2 = 9 - 6\sqrt{-1} - 1 = 8 - 6\sqrt{-1}
  3. Multiply and simplify: Multiply 22 by xx and simplify.2(31)=6212(3 - \sqrt{-1}) = 6 - 2\sqrt{-1}
  4. Combine and subtract: Combine the results from Step 22 and Step 33 and subtract 22.\newline(861)+(621)2(8 - 6\sqrt{-1}) + (6 - 2\sqrt{-1}) - 2\newline=8+626121= 8 + 6 - 2 - 6\sqrt{-1} - 2\sqrt{-1}\newline=1281= 12 - 8\sqrt{-1}\newline=481= 4 - 8\sqrt{-1}

More problems from Transformations of quadratic functions