Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-x^(2)-x-5y^(2)+y^(3)=2y then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If x2x5y2+y3=2y -x^{2}-x-5 y^{2}+y^{3}=2 y then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If x2x5y2+y3=2y -x^{2}-x-5 y^{2}+y^{3}=2 y then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate Terms: Differentiate both sides of the equation with respect to xx. We will use implicit differentiation because yy is a function of xx. Differentiate each term on the left side: ddx(x2)=2x\frac{d}{dx}(-x^2) = -2x ddx(x)=1\frac{d}{dx}(-x) = -1 ddx(5y2)=10ydydx\frac{d}{dx}(-5y^2) = -10y\frac{dy}{dx} because we need to use the chain rule for differentiation of yy with respect to xx. ddx(y3)=3y2dydx\frac{d}{dx}(y^3) = 3y^2\frac{dy}{dx} for the same reason as above. Differentiate the right side: ddx(2y)=2dydx\frac{d}{dx}(2y) = 2\frac{dy}{dx}
  2. Write Differentiated Equation: Write down the differentiated equation.\newline2x110ydydx+3y2dydx=2dydx-2x - 1 - 10y\frac{dy}{dx} + 3y^2\frac{dy}{dx} = 2\frac{dy}{dx}
  3. Collect Terms: Collect all dydx\frac{dy}{dx} terms on one side and the remaining terms on the other side.\newline10y(dydx)+3y2(dydx)2(dydx)=2x+1-10y\left(\frac{dy}{dx}\right) + 3y^2\left(\frac{dy}{dx}\right) - 2\left(\frac{dy}{dx}\right) = 2x + 1
  4. Factor Out dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} on the left side of the equation.\newlinedydx(10y+3y22)=2x+1\frac{dy}{dx}(-10y + 3y^2 - 2) = 2x + 1
  5. Solve for dydx\frac{dy}{dx}: Solve for dydx\frac{dy}{dx}.dydx=2x+110y+3y22\frac{dy}{dx} = \frac{2x + 1}{-10y + 3y^2 - 2}

More problems from Transformations of quadratic functions