Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-x^(2)-x^(3)y+1=-y then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If x2x3y+1=y -x^{2}-x^{3} y+1=-y then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If x2x3y+1=y -x^{2}-x^{3} y+1=-y then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Write Equation Differentiation: Write down the given equation and differentiate both sides with respect to xx.\newlineGiven equation: x2x3y+1=y-x^2 - x^3y + 1 = -y\newlineDifferentiate both sides with respect to xx using the product rule for the term x3y-x^3y and the chain rule for the term y-y.
  2. Differentiate Left Side: Differentiate each term on the left side of the equation.\newlineDifferentiate x2-x^2 with respect to xx to get 2x-2x.\newlineDifferentiate x3y-x^3y with respect to xx using the product rule: ddx(x3y)=x3dydx3x2y\frac{d}{dx}(-x^3y) = -x^3\frac{dy}{dx} - 3x^2y.\newlineDifferentiate +1+1 with respect to xx to get 00, since it is a constant.
  3. Differentiate Right Side: Differentiate the right side of the equation.\newlineDifferentiate y-y with respect to xx using the chain rule: ddx(y)=(dydx)\frac{d}{dx}(-y) = -(\frac{dy}{dx}).
  4. Write Differentiated Equation: Write down the differentiated equation.\newlineThe differentiated equation is: 2xx3dydx3x2y=dydx-2x - x^3\frac{dy}{dx} - 3x^2y = -\frac{dy}{dx}.
  5. Isolate Terms: Isolate terms containing dydx\frac{dy}{dx} on one side of the equation.\newlineAdd x3dydxx^3\frac{dy}{dx} to both sides and add dydx\frac{dy}{dx} to both sides to get: 2x3x2y=x3dydx+dydx-2x - 3x^2y = x^3\frac{dy}{dx} + \frac{dy}{dx}.
  6. Factor Out (dydx):</b>Factorout$(dydx)(\frac{dy}{dx}):</b> Factor out \$(\frac{dy}{dx}) from the right side of the equation.\newlineWe get: \(-2x - 33x^22y = (\frac{dy}{dx})(x^33 + 11).
  7. Solve for (dydx):</b>Solvefor$(dydx)(\frac{dy}{dx}):</b> Solve for \$(\frac{dy}{dx}).\newlineDivide both sides by (x3+1)(x^3 + 1) to isolate (dydx)(\frac{dy}{dx}): (dydx)=2x3x2yx3+1(\frac{dy}{dx}) = \frac{-2x - 3x^2y}{x^3 + 1}.

More problems from Transformations of quadratic functions