Q. If logb−ca=logc−ab=loga−bc, prove that aa×bb×cc=1
Equating Logarithmic Arguments: Since logb−ca=logc−ab=loga−bc, we can equate the arguments of the logarithms:b−ca=c−ab=a−bc
Cross-Multiply Relationships: Cross-multiply each pair to find relationships between a, b, and c:a(c−a)=b(b−c)andb(a−b)=c(c−a)
Simplify and Rearrange: Simplify and rearrange the equations:ac−a2=b2−bcandab−b2=c2−ca
Addition of Equations: Add the equations together:ac−a2+ab−b2=b2−bc+c2−caThis simplifies to:ac+ab−a2−b2=b2+c2−bc−ca
Isolate Variables: Rearrange terms to isolate all variables on one side:ac+ab+bc=a2+b2+c2
Exponential Transformation: Taking exponentials on both sides, we get:eac+ab+bc=ea2+b2+c2
Incorrect Exponential Form: Using properties of exponents, rewrite the equation:(aa×bb×cc)2=ea2+b2+c2This step is incorrect as the exponential form does not match the original equation.
More problems from Transformations of quadratic functions