Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
(j)/(k)=(4)/(5), which of the following correctly expresses 
k in terms of 
j ?
Choose 1 answer:
(A) 
k=(4)/(5j)
(B) 
k=(5)/(4j)
(C) 
k=(4j)/(5)
(D) 
k=(5j)/(4)

If jk=45 \frac{j}{k}=\frac{4}{5} , which of the following correctly expresses k k in terms of j j ?\newlineChoose 11 answer:\newline(A) k=45j k=\frac{4}{5 j} \newline(B) k=54j k=\frac{5}{4 j} \newline(C) k=4j5 k=\frac{4 j}{5} \newline(D) k=5j4 k=\frac{5 j}{4}

Full solution

Q. If jk=45 \frac{j}{k}=\frac{4}{5} , which of the following correctly expresses k k in terms of j j ?\newlineChoose 11 answer:\newline(A) k=45j k=\frac{4}{5 j} \newline(B) k=54j k=\frac{5}{4 j} \newline(C) k=4j5 k=\frac{4 j}{5} \newline(D) k=5j4 k=\frac{5 j}{4}
  1. Cross-multiply to eliminate fractions: The given equation is jk=45 \frac{j}{k} = \frac{4}{5} . To express k k in terms of j j , we need to solve for k k . Start by cross-multiplying to eliminate the fractions.
  2. Relate j and k directly: Cross-multiplying gives us 5j=4k 5j = 4k . This equation relates j j and k k directly and allows us to solve for k k in terms of j j .
  3. Isolate k in terms of j: To solve for k k , divide both sides of the equation by 44. This gives k=5j4 k = \frac{5j}{4} . This step isolates k k on one side of the equation, expressing it in terms of j j .

More problems from Simplify rational expressions