Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x)=(x^(2)+14)/(6x), what is the value of 
f(3), to the nearest ten-thousandth (if necessary)?
Answer:

If f(x)=x2+146x f(x)=\frac{x^{2}+14}{6 x} , what is the value of f(3) f(3) , to the nearest ten-thousandth (if necessary)?\newlineAnswer:

Full solution

Q. If f(x)=x2+146x f(x)=\frac{x^{2}+14}{6 x} , what is the value of f(3) f(3) , to the nearest ten-thousandth (if necessary)?\newlineAnswer:
  1. Substitute xx with 33: Substitute the value of xx with 33 in the function f(x)f(x).f(3)=32+146×3f(3) = \frac{3^2 + 14}{6 \times 3}
  2. Calculate numerator: Calculate the numerator by squaring 33 and adding 1414. \newline32=93^2 = 9\newline9+14=239 + 14 = 23
  3. Calculate denominator: Calculate the denominator by multiplying 66 with 33. \newline6×3=186 \times 3 = 18
  4. Find f(3)f(3): Divide the numerator by the denominator to find f(3)f(3).f(3)=2318f(3) = \frac{23}{18}
  5. Perform division: Perform the division to get the decimal value. f(3)1.27777778f(3) \approx 1.27777778
  6. Round to nearest ten-thousandth: Round the result to the nearest ten-thousandth. f(3)1.2778f(3) \approx 1.2778

More problems from Find trigonometric functions using a calculator