Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f^(')(x)=-f(x) and 
f(1)=2, then 
f(3)=me^(n) for some integers 
m and 
n.
What are 
m and 
n ?

{:[m=],[n=]:}

If f(x)=f(x) f^{\prime}(x)=-f(x) and f(1)=2 f(1)=2 , then f(3)=men f(3)=m e^{n} for some integers m m and n n .\newlineWhat are m m and n n ?\newlinem=n= \begin{array}{l} m= \square \\ n= \square \end{array}

Full solution

Q. If f(x)=f(x) f^{\prime}(x)=-f(x) and f(1)=2 f(1)=2 , then f(3)=men f(3)=m e^{n} for some integers m m and n n .\newlineWhat are m m and n n ?\newlinem=n= \begin{array}{l} m= \square \\ n= \square \end{array}
  1. Find CC value: Now, we use the initial condition f(1)=2f(1) = 2 to find the value of CC. Plugging x=1x = 1 into f(x)=Cexf(x) = Ce^{-x}, we get f(1)=Ce1=2f(1) = Ce^{-1} = 2.
  2. Solve for C: Solve for C: Ce1=2Ce^{-1} = 2 implies C=2eC = 2e.
  3. Simplify function: Now we have the function f(x)=2eexf(x) = 2e \cdot e^{-x}. Simplify this to get f(x)=2e1xf(x) = 2e^{1-x}.
  4. Substitute x=3x=3: To find f(3)f(3), substitute x=3x = 3 into f(x)=2e1xf(x) = 2e^{1-x}. So, f(3)=2e13f(3) = 2e^{1-3}.
  5. Calculate f(3)f(3): Calculate f(3)f(3): f(3)=2e2f(3) = 2e^{-2}. This is the same as f(3)=2e2f(3) = \frac{2}{e^2}.
  6. Express in menme^{n}: Now, we need to express 2e2\frac{2}{e^2} in the form of menme^{n}. Since e2e^{-2} is the same as 1e2\frac{1}{e^2}, we can write f(3)=2e2f(3) = 2 \cdot e^{-2}.
  7. Final result: Thus, we have f(3)=2e(2)f(3) = 2 \cdot e^{(-2)}, which means m=2m = 2 and n=2n = -2.

More problems from Transformations of quadratic functions