Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x)=(-8)/(9x^(3)), what is the value of 
f(2), to the nearest ten-thousandth (if necessary)?
Answer:

If f(x)=89x3 f(x)=\frac{-8}{9 x^{3}} , what is the value of f(2) f(2) , to the nearest ten-thousandth (if necessary)?\newlineAnswer:

Full solution

Q. If f(x)=89x3 f(x)=\frac{-8}{9 x^{3}} , what is the value of f(2) f(2) , to the nearest ten-thousandth (if necessary)?\newlineAnswer:
  1. Substitute xx with 22: Substitute the value of xx with 22 in the function f(x)f(x).f(2)=89(2)3f(2) = \frac{-8}{9 \cdot (2)^3}
  2. Calculate 232^3: Calculate the value of 22 raised to the power of 33.\newline23=2×2×2=82^3 = 2 \times 2 \times 2 = 8
  3. Substitute 232^3: Substitute the value of 232^3 into the function.\newlinef(2)=89×8f(2) = \frac{-8}{9\times 8}
  4. Perform division: Perform the division to find the value of f(2)f(2).f(2)=872f(2) = \frac{-8}{72}f(2)=19f(2) = -\frac{1}{9}
  5. Convert fraction to decimal: Convert the fraction to a decimal rounded to the nearest ten-thousandth.\newline190.1111-\frac{1}{9} \approx -0.1111

More problems from Find trigonometric functions using a calculator