Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x)=7^(x^(2)-3)+13, what is the value of 
f(1), to the nearest hundredth (if necessary)?
Answer:

If f(x)=7x23+13 f(x)=7^{x^{2}-3}+13 , what is the value of f(1) f(1) , to the nearest hundredth (if necessary)?\newlineAnswer:

Full solution

Q. If f(x)=7x23+13 f(x)=7^{x^{2}-3}+13 , what is the value of f(1) f(1) , to the nearest hundredth (if necessary)?\newlineAnswer:
  1. Substitute xx with 11: To find the value of f(1)f(1), we need to substitute xx with 11 in the function f(x)=7(x23)+13f(x)=7^{(x^{2}-3)}+13.
  2. Calculate the exponent: Substitute xx with 11: f(1)=7(12)3+13f(1)=7^{(1^{2})-3}+13.
  3. Calculate 727^{-2}: Calculate the exponent: 123=13=21^{2}-3 = 1-3 = -2.
  4. Convert to decimal: Now we have f(1)=72+13f(1)=7^{-2}+13.
  5. Add to 1313: Calculate 727^{-2}: 72=1/(72)=1/497^{-2} = 1/(7^{2}) = 1/49.
  6. Round to nearest hundredth: Now we have f(1)=149+13f(1)=\frac{1}{49}+13.
  7. Round to nearest hundredth: Now we have f(1)=149+13f(1)=\frac{1}{49}+13.Convert 149\frac{1}{49} to a decimal: 1490.02040816\frac{1}{49} \approx 0.02040816.
  8. Round to nearest hundredth: Now we have f(1)=149+13f(1)=\frac{1}{49}+13.Convert 149\frac{1}{49} to a decimal: 1490.02040816\frac{1}{49} \approx 0.02040816.Add the decimal to 1313: 0.02040816+1313.020408160.02040816 + 13 \approx 13.02040816.
  9. Round to nearest hundredth: Now we have f(1)=149+13f(1)=\frac{1}{49}+13.Convert 149\frac{1}{49} to a decimal: 1490.02040816\frac{1}{49} \approx 0.02040816.Add the decimal to 1313: 0.02040816+1313.020408160.02040816 + 13 \approx 13.02040816.Round to the nearest hundredth: 13.0204081613.0213.02040816 \approx 13.02.

More problems from Find trigonometric functions using a calculator