Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x)=(3)/(14-x^(2)), what is the value of 
f(-6), to the nearest thousandth (if necessary)?
Answer:

If f(x)=314x2 f(x)=\frac{3}{14-x^{2}} , what is the value of f(6) f(-6) , to the nearest thousandth (if necessary)?\newlineAnswer:

Full solution

Q. If f(x)=314x2 f(x)=\frac{3}{14-x^{2}} , what is the value of f(6) f(-6) , to the nearest thousandth (if necessary)?\newlineAnswer:
  1. Substitute xx with 6-6: Substitute xx with 6-6 in the function f(x)=314x2f(x) = \frac{3}{14-x^2}.
    f(6)=314(6)2f(-6) = \frac{3}{14-(-6)^2}
  2. Calculate value of (6)2(-6)^2: Calculate the value of (6)2(-6)^2.\newline(6)2=36(-6)^2 = 36
  3. Substitute 3636 into function: Substitute 3636 into the function.f(6)=31436f(-6) = \frac{3}{14-36}
  4. Perform subtraction in denominator: Perform the subtraction in the denominator. 1436=2214 - 36 = -22
  5. Calculate value of f(6-6): Calculate the value of f(6)f(-6).f(6)=322f(-6) = \frac{3}{-22}
  6. Simplify fraction to decimal: Simplify the fraction to get the decimal value. f(6)3220.136363636f(-6) \approx \frac{3}{-22} \approx -0.136363636\ldots
  7. Round result to nearest thousandth: Round the result to the nearest thousandth. f(6)0.136f(-6) \approx -0.136

More problems from Find trigonometric functions using a calculator