Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=8 and 
f(n)=-3f(n-1)+1 then find the value of 
f(5).
Answer:

If f(1)=8 f(1)=8 and f(n)=3f(n1)+1 f(n)=-3 f(n-1)+1 then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=8 f(1)=8 and f(n)=3f(n1)+1 f(n)=-3 f(n-1)+1 then find the value of f(5) f(5) .\newlineAnswer:
  1. Given Information: We are given that f(1)=8f(1) = 8. To find f(5)f(5), we need to find the values of f(2)f(2), f(3)f(3), f(4)f(4), and then f(5)f(5) using the recursive formula f(n)=3f(n1)+1f(n) = -3f(n-1) + 1.\newlineLet's start by finding f(2)f(2).\newlinef(2)=3f(21)+1f(2) = -3f(2-1) + 1\newlinef(2)=3f(1)+1f(2) = -3f(1) + 1\newlinef(5)f(5)00\newlinef(5)f(5)11\newlinef(5)f(5)22
  2. Find f(2)f(2): Now, let's find f(3)f(3) using the value of f(2)f(2).
    f(3)=3f(31)+1f(3) = -3f(3-1) + 1
    f(3)=3f(2)+1f(3) = -3f(2) + 1
    f(3)=3(23)+1f(3) = -3(-23) + 1
    f(3)=69+1f(3) = 69 + 1
    f(3)=70f(3) = 70
  3. Find f(3)f(3): Next, we calculate f(4)f(4) using the value of f(3)f(3).
    f(4)=3f(41)+1f(4) = -3f(4-1) + 1
    f(4)=3f(3)+1f(4) = -3f(3) + 1
    f(4)=3(70)+1f(4) = -3(70) + 1
    f(4)=210+1f(4) = -210 + 1
    f(4)=209f(4) = -209
  4. Calculate f(4)f(4): Finally, we find f(5)f(5) using the value of f(4)f(4).
    f(5)=3f(51)+1f(5) = -3f(5-1) + 1
    f(5)=3f(4)+1f(5) = -3f(4) + 1
    f(5)=3(209)+1f(5) = -3(-209) + 1
    f(5)=627+1f(5) = 627 + 1
    f(5)=628f(5) = 628

More problems from Evaluate functions