Q. If f(1)=8 and f(n)=−3f(n−1)+1 then find the value of f(5).Answer:
Given Information: We are given that f(1)=8. To find f(5), we need to find the values of f(2), f(3), f(4), and then f(5) using the recursive formula f(n)=−3f(n−1)+1.Let's start by finding f(2).f(2)=−3f(2−1)+1f(2)=−3f(1)+1f(5)0f(5)1f(5)2
Find f(2): Now, let's find f(3) using the value of f(2). f(3)=−3f(3−1)+1 f(3)=−3f(2)+1 f(3)=−3(−23)+1 f(3)=69+1 f(3)=70
Find f(3): Next, we calculate f(4) using the value of f(3). f(4)=−3f(4−1)+1 f(4)=−3f(3)+1 f(4)=−3(70)+1 f(4)=−210+1 f(4)=−209
Calculate f(4): Finally, we find f(5) using the value of f(4). f(5)=−3f(5−1)+1 f(5)=−3f(4)+1 f(5)=−3(−209)+1 f(5)=627+1 f(5)=628